mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
commit
4d0e2ccb32
47
Maths/SimpsonRule.py
Normal file
47
Maths/SimpsonRule.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
|
||||
'''
|
||||
Numerical integration or quadrature for a smooth function f with known values at x_i
|
||||
|
||||
This method is the classical approch of suming 'Equally Spaced Abscissas'
|
||||
|
||||
method 2:
|
||||
"Simpson Rule"
|
||||
|
||||
'''
|
||||
|
||||
def method_2(boundary, steps):
|
||||
# "Simpson Rule"
|
||||
# int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn)
|
||||
h = (boundary[1] - boundary[0]) / steps
|
||||
a = boundary[0]
|
||||
b = boundary[1]
|
||||
x_i = makePoints(a,b,h)
|
||||
y = 0.0
|
||||
y += (h/3.0)*f(a)
|
||||
cnt = 2
|
||||
for i in x_i:
|
||||
y += (h/3)*(4-2*(cnt%2))*f(i)
|
||||
cnt += 1
|
||||
y += (h/3.0)*f(b)
|
||||
return y
|
||||
|
||||
def makePoints(a,b,h):
|
||||
x = a + h
|
||||
while x < (b-h):
|
||||
yield x
|
||||
x = x + h
|
||||
|
||||
def f(x): #enter your function here
|
||||
y = (x-0)*(x-0)
|
||||
return y
|
||||
|
||||
def main():
|
||||
a = 0.0 #Lower bound of integration
|
||||
b = 1.0 #Upper bound of integration
|
||||
steps = 10.0 #define number of steps or resolution
|
||||
boundary = [a, b] #define boundary of integration
|
||||
y = method_2(boundary, steps)
|
||||
print 'y = {0}'.format(y)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user