From 4f573e0d8d10ccbe745f0bb7fdd608a8adec7002 Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Sun, 20 Oct 2024 16:52:44 +0000 Subject: [PATCH] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- neural_network/sliding_window_attention.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/neural_network/sliding_window_attention.py b/neural_network/sliding_window_attention.py index 54d3fec2c..319895db8 100644 --- a/neural_network/sliding_window_attention.py +++ b/neural_network/sliding_window_attention.py @@ -1,7 +1,7 @@ """ - - - - - -- - - - - - - - - - - - - - - - - - - - - - - Name - - sliding_window_attention.py -Goal - - Implement a neural network architecture using sliding +Goal - - Implement a neural network architecture using sliding window attention for sequence modeling tasks. Detail: Total 5 layers neural network * Input layer @@ -12,11 +12,11 @@ Author: Stephen Lee Github: 245885195@qq.com Date: 2024.10.20 References: - 1. Choromanska, A., et al. (2020). "On the Importance of - Initialization and Momentum in Deep Learning." *Proceedings + 1. Choromanska, A., et al. (2020). "On the Importance of + Initialization and Momentum in Deep Learning." *Proceedings of the 37th International Conference on Machine Learning*. - 2. Dai, Z., et al. (2020). "Transformers are RNNs: Fast - Autoregressive Transformers with Linear Attention." + 2. Dai, Z., et al. (2020). "Transformers are RNNs: Fast + Autoregressive Transformers with Linear Attention." *arXiv preprint arXiv:2006.16236*. 3. [Attention Mechanisms in Neural Networks](https://en.wikipedia.org/wiki/Attention_(machine_learning)) - - - - - -- - - - - - - - - - - - - - - - - - - - - - - @@ -28,7 +28,7 @@ import numpy as np class SlidingWindowAttention: """Sliding Window Attention Module. - This class implements a sliding window attention mechanism where + This class implements a sliding window attention mechanism where the model attends to a fixed-size window of context around each token. Attributes: @@ -54,13 +54,13 @@ class SlidingWindowAttention: Forward pass for the sliding window attention. Args: - input_tensor (np.ndarray): Input tensor of shape (batch_size, + input_tensor (np.ndarray): Input tensor of shape (batch_size, seq_length, embed_dim). Returns: np.ndarray: Output tensor of shape (batch_size, seq_length, embed_dim). - >>> x = np.random.randn(2, 10, 4) # Batch size 2, sequence + >>> x = np.random.randn(2, 10, 4) # Batch size 2, sequence >>> attention = SlidingWindowAttention(embed_dim=4, window_size=3) >>> output = attention.forward(x) >>> output.shape @@ -95,7 +95,7 @@ if __name__ == "__main__": # usage rng = np.random.default_rng() - x = rng.standard_normal((2, 10, 4)) # Batch size 2, + x = rng.standard_normal((2, 10, 4)) # Batch size 2, attention = SlidingWindowAttention(embed_dim=4, window_size=3) output = attention.forward(x) print(output)