mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-30 22:23:42 +00:00
Implemented Gelu Function (#7368)
* Implemented Gelu Function * Renamed file and added more description to function * Extended the name GELU * Update gaussian_error_linear_unit.py Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
b8281d79ef
commit
50da472ddc
53
maths/gaussian_error_linear_unit.py
Normal file
53
maths/gaussian_error_linear_unit.py
Normal file
|
@ -0,0 +1,53 @@
|
|||
"""
|
||||
This script demonstrates an implementation of the Gaussian Error Linear Unit function.
|
||||
* https://en.wikipedia.org/wiki/Activation_function#Comparison_of_activation_functions
|
||||
|
||||
The function takes a vector of K real numbers as input and returns x * sigmoid(1.702*x).
|
||||
Gaussian Error Linear Unit (GELU) is a high-performing neural network activation
|
||||
function.
|
||||
|
||||
This script is inspired by a corresponding research paper.
|
||||
* https://arxiv.org/abs/1606.08415
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def sigmoid(vector: np.array) -> np.array:
|
||||
"""
|
||||
Mathematical function sigmoid takes a vector x of K real numbers as input and
|
||||
returns 1/ (1 + e^-x).
|
||||
https://en.wikipedia.org/wiki/Sigmoid_function
|
||||
|
||||
>>> sigmoid(np.array([-1.0, 1.0, 2.0]))
|
||||
array([0.26894142, 0.73105858, 0.88079708])
|
||||
"""
|
||||
return 1 / (1 + np.exp(-vector))
|
||||
|
||||
|
||||
def gaussian_error_linear_unit(vector: np.array) -> np.array:
|
||||
"""
|
||||
Implements the Gaussian Error Linear Unit (GELU) function
|
||||
|
||||
Parameters:
|
||||
vector (np.array): A numpy array of shape (1,n)
|
||||
consisting of real values
|
||||
|
||||
Returns:
|
||||
gelu_vec (np.array): The input numpy array, after applying
|
||||
gelu.
|
||||
|
||||
Examples:
|
||||
>>> gaussian_error_linear_unit(np.array([-1.0, 1.0, 2.0]))
|
||||
array([-0.15420423, 0.84579577, 1.93565862])
|
||||
|
||||
>>> gaussian_error_linear_unit(np.array([-3]))
|
||||
array([-0.01807131])
|
||||
"""
|
||||
return vector * sigmoid(1.702 * vector)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user