Enable ruff PLR5501 rule (#11332)

* Enable ruff PLR5501 rule

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Maxim Smolskiy 2024-03-28 20:25:41 +03:00 committed by GitHub
parent 19fd435042
commit 516a3028d1
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
24 changed files with 210 additions and 238 deletions

View File

@ -28,9 +28,8 @@ def is_valid(
if vertical:
if row + i >= len(puzzle) or puzzle[row + i][col] != "":
return False
else:
if col + i >= len(puzzle[0]) or puzzle[row][col + i] != "":
return False
elif col + i >= len(puzzle[0]) or puzzle[row][col + i] != "":
return False
return True

View File

@ -101,9 +101,8 @@ def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
state = True
elif alive > 3:
state = False
else:
if alive == 3:
state = True
elif alive == 3:
state = True
return state

View File

@ -206,20 +206,19 @@ def decrypt_caesar_with_chi_squared(
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
occurrences = decrypted_with_shift.count(letter)
elif letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
occurrences = decrypted_with_shift.count(letter)
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
expected = frequencies[letter] * occurrences
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
expected = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
chi_letter_value = ((occurrences - expected) ** 2) / expected
# Complete the chi squared statistic formula
chi_letter_value = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
chi_squared_statistic_values[shift] = (

View File

@ -215,11 +215,11 @@ def del_node(root: MyNode, data: Any) -> MyNode | None:
return root
else:
root.set_left(del_node(left_child, data))
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(right_child, data))
# root.get_data() < data
elif right_child is None:
return root
else:
root.set_right(del_node(right_child, data))
if get_height(right_child) - get_height(left_child) == 2:
assert right_child is not None

View File

@ -185,12 +185,11 @@ class BinarySearchTree:
break
else:
parent_node = parent_node.left
elif parent_node.right is None:
parent_node.right = new_node
break
else:
if parent_node.right is None:
parent_node.right = new_node
break
else:
parent_node = parent_node.right
parent_node = parent_node.right
new_node.parent = parent_node
def insert(self, *values) -> Self:

View File

@ -74,14 +74,13 @@ class BinarySearchTree:
def _put(self, node: Node | None, label: int, parent: Node | None = None) -> Node:
if node is None:
node = Node(label, parent)
elif label < node.label:
node.left = self._put(node.left, label, node)
elif label > node.label:
node.right = self._put(node.right, label, node)
else:
if label < node.label:
node.left = self._put(node.left, label, node)
elif label > node.label:
node.right = self._put(node.right, label, node)
else:
msg = f"Node with label {label} already exists"
raise ValueError(msg)
msg = f"Node with label {label} already exists"
raise ValueError(msg)
return node
@ -106,11 +105,10 @@ class BinarySearchTree:
if node is None:
msg = f"Node with label {label} does not exist"
raise ValueError(msg)
else:
if label < node.label:
node = self._search(node.left, label)
elif label > node.label:
node = self._search(node.right, label)
elif label < node.label:
node = self._search(node.left, label)
elif label > node.label:
node = self._search(node.right, label)
return node

View File

@ -107,12 +107,11 @@ class RedBlackTree:
else:
self.left = RedBlackTree(label, 1, self)
self.left._insert_repair()
elif self.right:
self.right.insert(label)
else:
if self.right:
self.right.insert(label)
else:
self.right = RedBlackTree(label, 1, self)
self.right._insert_repair()
self.right = RedBlackTree(label, 1, self)
self.right._insert_repair()
return self.parent or self
def _insert_repair(self) -> None:
@ -178,36 +177,34 @@ class RedBlackTree:
self.parent.left = None
else:
self.parent.right = None
else:
# The node is black
if child is None:
# This node and its child are black
if self.parent is None:
# The tree is now empty
return RedBlackTree(None)
else:
self._remove_repair()
if self.is_left():
self.parent.left = None
else:
self.parent.right = None
self.parent = None
# The node is black
elif child is None:
# This node and its child are black
if self.parent is None:
# The tree is now empty
return RedBlackTree(None)
else:
# This node is black and its child is red
# Move the child node here and make it black
self.label = child.label
self.left = child.left
self.right = child.right
if self.left:
self.left.parent = self
if self.right:
self.right.parent = self
self._remove_repair()
if self.is_left():
self.parent.left = None
else:
self.parent.right = None
self.parent = None
else:
# This node is black and its child is red
# Move the child node here and make it black
self.label = child.label
self.left = child.left
self.right = child.right
if self.left:
self.left.parent = self
if self.right:
self.right.parent = self
elif self.label is not None and self.label > label:
if self.left:
self.left.remove(label)
else:
if self.right:
self.right.remove(label)
elif self.right:
self.right.remove(label)
return self.parent or self
def _remove_repair(self) -> None:
@ -369,11 +366,10 @@ class RedBlackTree:
return None
else:
return self.right.search(label)
elif self.left is None:
return None
else:
if self.left is None:
return None
else:
return self.left.search(label)
return self.left.search(label)
def floor(self, label: int) -> int | None:
"""Returns the largest element in this tree which is at most label.

View File

@ -43,22 +43,21 @@ def split(root: Node | None, value: int) -> tuple[Node | None, Node | None]:
return None, None
elif root.value is None:
return None, None
elif value < root.value:
"""
Right tree's root will be current node.
Now we split(with the same value) current node's left son
Left tree: left part of that split
Right tree's left son: right part of that split
"""
left, root.left = split(root.left, value)
return left, root
else:
if value < root.value:
"""
Right tree's root will be current node.
Now we split(with the same value) current node's left son
Left tree: left part of that split
Right tree's left son: right part of that split
"""
left, root.left = split(root.left, value)
return left, root
else:
"""
Just symmetric to previous case
"""
root.right, right = split(root.right, value)
return root, right
"""
Just symmetric to previous case
"""
root.right, right = split(root.right, value)
return root, right
def merge(left: Node | None, right: Node | None) -> Node | None:

View File

@ -40,11 +40,10 @@ class BinaryHeap:
while self.__size >= 2 * i:
if 2 * i + 1 > self.__size:
bigger_child = 2 * i
elif self.__heap[2 * i] > self.__heap[2 * i + 1]:
bigger_child = 2 * i
else:
if self.__heap[2 * i] > self.__heap[2 * i + 1]:
bigger_child = 2 * i
else:
bigger_child = 2 * i + 1
bigger_child = 2 * i + 1
temporary = self.__heap[i]
if self.__heap[i] < self.__heap[bigger_child]:
self.__heap[i] = self.__heap[bigger_child]

View File

@ -95,13 +95,12 @@ def infix_2_postfix(infix: str) -> str:
while stack[-1] != "(":
post_fix.append(stack.pop()) # Pop stack & add the content to Postfix
stack.pop()
else:
if len(stack) == 0:
stack.append(x) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while stack and stack[-1] != "(" and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop()) # pop stack & add to Postfix
stack.append(x) # push x to stack
elif len(stack) == 0:
stack.append(x) # If stack is empty, push x to stack
else: # while priority of x is not > priority of element in the stack
while stack and stack[-1] != "(" and priority[x] <= priority[stack[-1]]:
post_fix.append(stack.pop()) # pop stack & add to Postfix
stack.append(x) # push x to stack
print(
x.center(8),

View File

@ -153,31 +153,30 @@ class RadixNode:
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(remaining_word)
# If it is not a leaf, we don't have to delete
elif not incoming_node.is_leaf:
return False
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
# We delete the nodes if no edges go from it
if len(incoming_node.nodes) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
merging_node = next(iter(self.nodes.values()))
self.is_leaf = merging_node.is_leaf
self.prefix += merging_node.prefix
self.nodes = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes) > 1:
incoming_node.is_leaf = False
# If there is 1 edge, we merge it with its child
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
merging_node = next(iter(self.nodes.values()))
self.is_leaf = merging_node.is_leaf
self.prefix += merging_node.prefix
self.nodes = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes) > 1:
incoming_node.is_leaf = False
# If there is 1 edge, we merge it with its child
else:
merging_node = next(iter(incoming_node.nodes.values()))
incoming_node.is_leaf = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
incoming_node.nodes = merging_node.nodes
merging_node = next(iter(incoming_node.nodes.values()))
incoming_node.is_leaf = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
incoming_node.nodes = merging_node.nodes
return True
return True
def print_tree(self, height: int = 0) -> None:
"""Print the tree

View File

@ -274,14 +274,13 @@ def convex_hull_bf(points: list[Point]) -> list[Point]:
points_left_of_ij = True
elif det_k < 0:
points_right_of_ij = True
else:
# point[i], point[j], point[k] all lie on a straight line
# if point[k] is to the left of point[i] or it's to the
# right of point[j], then point[i], point[j] cannot be
# part of the convex hull of A
if points[k] < points[i] or points[k] > points[j]:
ij_part_of_convex_hull = False
break
# point[i], point[j], point[k] all lie on a straight line
# if point[k] is to the left of point[i] or it's to the
# right of point[j], then point[i], point[j] cannot be
# part of the convex hull of A
elif points[k] < points[i] or points[k] > points[j]:
ij_part_of_convex_hull = False
break
if points_left_of_ij and points_right_of_ij:
ij_part_of_convex_hull = False

View File

@ -120,29 +120,29 @@ class GraphAdjacencyList(Generic[T]):
else:
self.adj_list[source_vertex] = [destination_vertex]
self.adj_list[destination_vertex] = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(destination_vertex)
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(destination_vertex)
self.adj_list[destination_vertex] = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
self.adj_list[source_vertex] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
self.adj_list[source_vertex] = [destination_vertex]
self.adj_list[destination_vertex] = []
# For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
elif source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(destination_vertex)
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(destination_vertex)
self.adj_list[destination_vertex] = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
self.adj_list[source_vertex] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
self.adj_list[source_vertex] = [destination_vertex]
self.adj_list[destination_vertex] = []
return self

View File

@ -18,11 +18,10 @@ class Heap:
else:
if 2 * start + 2 >= size:
smallest_child = 2 * start + 1
elif heap[2 * start + 1] < heap[2 * start + 2]:
smallest_child = 2 * start + 1
else:
if heap[2 * start + 1] < heap[2 * start + 2]:
smallest_child = 2 * start + 1
else:
smallest_child = 2 * start + 2
smallest_child = 2 * start + 2
if heap[smallest_child] < heap[start]:
temp, temp1 = heap[smallest_child], positions[smallest_child]
heap[smallest_child], positions[smallest_child] = (

View File

@ -270,24 +270,23 @@ def multi_a_star(start: TPos, goal: TPos, n_heuristic: int):
back_pointer,
)
close_list_inad.append(get_s)
elif g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("inf"):
do_something(back_pointer, goal, start)
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("inf"):
do_something(back_pointer, goal, start)
else:
get_s = open_list[0].top_show()
visited.add(get_s)
expand_state(
get_s,
0,
visited,
g_function,
close_list_anchor,
close_list_inad,
open_list,
back_pointer,
)
close_list_anchor.append(get_s)
get_s = open_list[0].top_show()
visited.add(get_s)
expand_state(
get_s,
0,
visited,
g_function,
close_list_anchor,
close_list_inad,
open_list,
back_pointer,
)
close_list_anchor.append(get_s)
print("No path found to goal")
print()
for i in range(n - 1, -1, -1):

View File

@ -113,11 +113,10 @@ def data_safety_checker(list_vote: list, actual_result: float) -> bool:
for i in list_vote:
if i > actual_result:
safe = not_safe + 1
elif abs(abs(i) - abs(actual_result)) <= 0.1:
safe += 1
else:
if abs(abs(i) - abs(actual_result)) <= 0.1:
safe += 1
else:
not_safe += 1
not_safe += 1
return safe > not_safe

View File

@ -20,11 +20,10 @@ def res(x, y):
if 0 not in (x, y):
# We use the relation x^y = y*log10(x), where 10 is the base.
return y * math.log10(x)
else:
if x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
elif x == 0: # 0 raised to any number is 0
return 0
elif y == 0:
return 1 # any number raised to 0 is 1
raise AssertionError("This should never happen")

View File

@ -94,14 +94,13 @@ def pollard_rho(
if divisor == 1:
# No common divisor yet, just keep searching.
continue
# We found a common divisor!
elif divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare

View File

@ -73,12 +73,11 @@ def cramers_rule_2x2(equation1: list[int], equation2: list[int]) -> tuple[float,
raise ValueError("Infinite solutions. (Consistent system)")
else:
raise ValueError("No solution. (Inconsistent system)")
elif determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
x = determinant_x / determinant
y = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)
x = determinant_x / determinant
y = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y)

View File

@ -46,10 +46,9 @@ def solution():
elif day > 29 and month == 2:
month += 1
day = day - 29
else:
if day > days_per_month[month - 1]:
month += 1
day = day - days_per_month[month - 2]
elif day > days_per_month[month - 1]:
month += 1
day = day - days_per_month[month - 2]
if month > 12:
year += 1

View File

@ -12,7 +12,6 @@ lint.ignore = [ # `ruff rule S101` for a description of that rule
"NPY002", # Replace legacy `np.random.choice` call with `np.random.Generator` -- FIX ME
"PGH003", # Use specific rule codes when ignoring type issues -- FIX ME
"PLC1901", # `{}` can be simplified to `{}` as an empty string is falsey
"PLR5501", # Consider using `elif` instead of `else` -- FIX ME
"PLW0120", # `else` clause on loop without a `break` statement -- FIX ME
"PLW060", # Using global for `{name}` but no assignment is done -- DO NOT FIX
"PLW2901", # PLW2901: Redefined loop variable -- FIX ME

View File

@ -137,11 +137,10 @@ def hill_climbing(
if change > max_change and change > 0:
max_change = change
next_state = neighbor
else: # finding min
elif change < min_change and change < 0: # finding min
# to direction with greatest descent
if change < min_change and change < 0:
min_change = change
next_state = neighbor
min_change = change
next_state = neighbor
if next_state is not None:
# we found at least one neighbor which improved the current state
current_state = next_state

View File

@ -33,18 +33,16 @@ def interpolation_search(sorted_collection, item):
current_item = sorted_collection[point]
if current_item == item:
return point
elif point < left:
right = left
left = point
elif point > right:
left = right
right = point
elif item < current_item:
right = point - 1
else:
if point < left:
right = left
left = point
elif point > right:
left = right
right = point
else:
if item < current_item:
right = point - 1
else:
left = point + 1
left = point + 1
return None
@ -79,15 +77,14 @@ def interpolation_search_by_recursion(sorted_collection, item, left, right):
return interpolation_search_by_recursion(sorted_collection, item, point, left)
elif point > right:
return interpolation_search_by_recursion(sorted_collection, item, right, left)
elif sorted_collection[point] > item:
return interpolation_search_by_recursion(
sorted_collection, item, left, point - 1
)
else:
if sorted_collection[point] > item:
return interpolation_search_by_recursion(
sorted_collection, item, left, point - 1
)
else:
return interpolation_search_by_recursion(
sorted_collection, item, point + 1, right
)
return interpolation_search_by_recursion(
sorted_collection, item, point + 1, right
)
def __assert_sorted(collection):

View File

@ -60,19 +60,18 @@ def compute_transform_tables(
def assemble_transformation(ops: list[list[str]], i: int, j: int) -> list[str]:
if i == 0 and j == 0:
return []
elif ops[i][j][0] in {"C", "R"}:
seq = assemble_transformation(ops, i - 1, j - 1)
seq.append(ops[i][j])
return seq
elif ops[i][j][0] == "D":
seq = assemble_transformation(ops, i - 1, j)
seq.append(ops[i][j])
return seq
else:
if ops[i][j][0] in {"C", "R"}:
seq = assemble_transformation(ops, i - 1, j - 1)
seq.append(ops[i][j])
return seq
elif ops[i][j][0] == "D":
seq = assemble_transformation(ops, i - 1, j)
seq.append(ops[i][j])
return seq
else:
seq = assemble_transformation(ops, i, j - 1)
seq.append(ops[i][j])
return seq
seq = assemble_transformation(ops, i, j - 1)
seq.append(ops[i][j])
return seq
if __name__ == "__main__":