commit convolution_neural_network.py

This commit is contained in:
Stephen Lee 2017-09-22 14:34:28 +08:00
parent 0e0e75db19
commit 52ee9a1e12

View File

@ -0,0 +1,343 @@
#-*- coding: utf-8 -*-
'''
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
Name - - CNN - Convolution Neural Network For Photo Recognizing
Goal - - Recognize Handing Writting Word Photo
DetailTotal 5 layers neural network
* Convolution layer
* Pooling layer
* Input layer layer of BP
* Hiden layer of BP
* Output layer of BP
Author: Stephen Lee
Program: PYTHON
Date: 2017.9.20
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
'''
import numpy as np
import matplotlib.pyplot as plt
class CNN():
conv1 = []
w_conv1 = []
thre_conv1 = []
step_conv1 = 0
size_pooling1 = 0
num_bp1 = 0
num_bp2 = 0
num_bp3 = 0
thre_bp1 = []
thre_bp2 = []
wkj = np.mat([])
vji = np.mat([])
rate_weight = 0
rate_thre = 0
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
'''
:param conv1_get: [a,c,d]size, number, step of convolution kernel
:param size_p1: pooling size
:param bp_num1: units number of flatten layer
:param bp_num2: units number of hidden layer
:param bp_num3: units number of output layer
:param rate_w: rate of weight learning
:param rate_t: rate of threshold learning
'''
self.num_bp1 = bp_num1
self.num_bp2 = bp_num2
self.num_bp3 = bp_num3
self.conv1 = conv1_get[:2]
self.step_conv1 = conv1_get[2]
self.size_pooling1 = size_p1
self.rate_weight = rate_w
self.rate_thre = rate_t
self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1
def save_model(self,save_path):
#将模型保存
import pickle
model_dic = {'num_bp1':self.num_bp1,
'num_bp2':self.num_bp2,
'num_bp3':self.num_bp3,
'conv1':self.conv1,
'step_conv1':self.step_conv1,
'size_pooling1':self.size_pooling1,
'rate_weight':self.rate_weight,
'rate_thre':self.rate_thre,
'w_conv1':self.w_conv1,
'wkj':self.wkj,
'vji':self.vji,
'thre_conv1':self.thre_conv1,
'thre_bp2':self.thre_bp2,
'thre_bp3':self.thre_bp3}
with open(save_path, 'wb') as f:
pickle.dump(model_dic, f)
print('模型已经保存: %s'% save_path)
def paste_model(self,save_path):
#实例方法,
#虽然这么写一点也不简洁。。。。
#卸载这个里面的话,只是用于修改已经存在的模型,要根据读取的数据返回实例的模型,再写一个吧
import pickle
with open(save_path, 'rb') as f:
model_dic = pickle.load(f)
self.num_bp1 = model_dic.get('num_bp1')
self.num_bp2 = model_dic.get('num_bp2')
self.num_bp3 = model_dic.get('num_bp3')
self.conv1 = model_dic.get('conv1')
self.step_conv1 = model_dic.get('step_conv1')
self.size_pooling1 = model_dic.get('size_pooling1')
self.rate_weight = model_dic.get('rate_weight')
self.rate_thre = model_dic.get('rate_thre')
self.w_conv1 = model_dic.get('w_conv1')
self.wkj = model_dic.get('wkj')
self.vji = model_dic.get('vji')
self.thre_conv1 = model_dic.get('thre_conv1')
self.thre_bp2 = model_dic.get('thre_bp2')
self.thre_bp3 = model_dic.get('thre_bp3')
print('已经成功读取模型')
@classmethod
def ReadModel(cls,model_path):
#类方法,读取保存的模型,返回一个实例。
import pickle
with open(model_path, 'rb') as f:
model_dic = pickle.load(f)
conv_get= model_dic.get('conv1')
conv_get.append(model_dic.get('step_conv1'))
size_p1 = model_dic.get('size_pooling1')
bp1 = model_dic.get('num_bp1')
bp2 = model_dic.get('num_bp2')
bp3 = model_dic.get('num_bp3')
r_w = model_dic.get('rate_weight')
r_t = model_dic.get('rate_thre')
#创建实例
conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
#修改实例的参数
conv_ins.w_conv1 = model_dic.get('w_conv1')
conv_ins.wkj = model_dic.get('wkj')
conv_ins.vji = model_dic.get('vji')
conv_ins.thre_conv1 = model_dic.get('thre_conv1')
conv_ins.thre_bp2 = model_dic.get('thre_bp2')
conv_ins.thre_bp3 = model_dic.get('thre_bp3')
return conv_ins
def sig(self,x):
return 1 / (1 + np.exp(-1*x))
def do_round(self,x):
return round(x, 3)
#卷积
def Convolute(self,data,convs,w_convs,thre_convs,conv_step):
size_conv = convs[0]
num_conv =convs[1]
size_data = np.shape(data)[0]
#得到原图像滑动的小图data_focus
data_focus = []
for i_focus in range(0, size_data - size_conv + 1, conv_step):
for j_focus in range(0, size_data - size_conv + 1, conv_step):
focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
data_focus.append(focus)
#计算所有卷积核得到的特征图每个特征图以矩阵形式存储为一个列表data_featuremap
data_featuremap = []
Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
for i_map in range(num_conv):
featuremap = []
for i_focus in range(len(data_focus)):
net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map]
featuremap.append(self.sig(net_focus))
featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
data_featuremap.append(featuremap)
#将data_focus中的focus展开为一维
focus1_list = []
for each_focus in data_focus:
focus1_list.extend(self.Expand_Mat(each_focus))
focus_list = np.asarray(focus1_list)
return focus_list,data_featuremap
# 池化
def Pooling(self,featuremaps,size_pooling):
size_map = len(featuremaps[0])
size_pooled = int(size_map/size_pooling)
featuremap_pooled = []
for i_map in range(len(featuremaps)):
map = featuremaps[i_map]
map_pooled = []
for i_focus in range(0,size_map,size_pooling):
for j_focus in range(0, size_map, size_pooling):
focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
#平均池化
map_pooled.append(np.average(focus))
#最大池化
#map_pooled.append(np.max(focus))
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
featuremap_pooled.append(map_pooled)
return featuremap_pooled
def Expand(self,datas):
#将三元的数据展开为1为的list
data_expanded = []
for i in range(len(datas)):
shapes = np.shape(datas[i])
data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
data_listed = data_listed.getA().tolist()[0]
data_expanded.extend(data_listed)
#连接所有数据
data_expanded = np.asarray(data_expanded)
return data_expanded
def Expand_Mat(self,data_mat):
#用来展开矩阵为一维的list
data_mat = np.asarray(data_mat)
shapes = np.shape(data_mat)
data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
return data_expanded
def Getpd_From_Pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
'''
误差反传从pooled到前一个map, 例如将池化层6*6的误差矩阵扩大为12*12的误差矩阵
pd_pool: 是采样层的误差list形式要改要改
out_map: 前面特征图的输出数量*size*size的列表形式
return: pd_all:前面层所有的特征图的pd num*size_map*size_map的列表形式
'''
pd_all = []
i_pool = 0
for i_map in range(num_map):
pd_conv1 = np.ones((size_map, size_map))
for i in range(0, size_map, size_pooling):
for j in range(0, size_map, size_pooling):
pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool]
i_pool = i_pool + 1
pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map])))
pd_all.append(pd_conv2)
return pd_all
def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
print('----------------------Start Training-------------------------')
print(' - - Shape: Train_Data ',np.shape(datas_train))
print(' - - Shape: Teach_Data ',np.shape(datas_teach))
rp = 0
all_mse = []
mse = 10000
while rp < n_repeat and mse >= error_accuracy:
alle = 0
print('-------------进行第%d次学习--------------'%rp)
for p in range(len(datas_train)):
#print('------------学习第%d个图像--------------'%p)
data_train = np.asmatrix(datas_train[p])
data_teach = np.asarray(datas_teach[p])
data_focus1,data_conved1 = self.Convolute(data_train,self.conv1,self.w_conv1,
self.thre_conv1,conv_step=self.step_conv1)
data_pooled1 = self.Pooling(data_conved1,self.size_pooling1)
shape_featuremap1 = np.shape(data_conved1)
'''
print(' -----original shape ', np.shape(data_train))
print(' ---- after convolution ',np.shape(data_conv1))
print(' -----after pooling ',np.shape(data_pooled1))
'''
data_bp_input = self.Expand(data_pooled1)
# 计算第一层输入输出
bp_out1 = data_bp_input
# 计算第二层输入输出
bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
bp_out2 = self.sig(bp_net_j)
# 计算第三层输入输出
bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
bp_out3 = self.sig(bp_net_k)
# 计算一般化误差
pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
pd_i_all = np.dot(pd_j_all,self.vji)
pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
pd_conv1_all = self.Getpd_From_Pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
shape_featuremap1[1],self.size_pooling1)
#卷积层1的权重和阈值修正每个卷积核的权重需要修正 12*12(map) 次
#修正量为featuremap中点的偏导值 乘以 前一层图像focus 整个权重模板一起更新
for k_conv in range(self.conv1[1]):
pd_conv_list = self.Expand_Mat(pd_conv1_all[k_conv])
delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)
self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))
self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
# 更新kj层的权重
self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
# 更新ji层的权重
self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
# 更新阈值
self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
# 计算总误差
errors = np.sum(abs((data_teach - bp_out3)))
alle = alle + errors
#print(' ----Teach ',data_teach)
#print(' ----BP_output ',bp_out3)
rp = rp + 1
mse = alle/patterns
all_mse.append(mse)
def draw_error():
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(all_mse, '+-')
plt.plot(yplot, 'r--')
plt.xlabel('Learning Times')
plt.ylabel('All_mse')
plt.grid(True, alpha=0.5)
plt.show()
print('------------------Training Complished---------------------')
print(' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)
if draw_e:
draw_error()
return mse
def produce(self,datas_test):
#对验证和测试数据集进行输出
produce_out = []
print('-------------------Start Testing-------------------------')
print(' - - Shape: Test_Data ',np.shape(datas_test))
for p in range(len(datas_test)):
print('--------测试第%d个图像----------' % p)
data_test = np.asmatrix(datas_test[p])
data_focus1, data_conved1 = self.Convolute(data_test, self.conv1, self.w_conv1,
self.thre_conv1, conv_step=self.step_conv1)
data_pooled1 = self.Pooling(data_conved1, self.size_pooling1)
data_bp_input = self.Expand(data_pooled1)
# 计算第一层输入输出
bp_out1 = data_bp_input
# 计算第二层输入输出
bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
bp_out2 = self.sig(bp_net_j)
# 计算第三层输入输出
bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
bp_out3 = self.sig(bp_net_k)
produce_out.extend(bp_out3.getA().tolist())
res = [list(map(self.do_round,each)) for each in produce_out]
return np.asarray(res)
def convolution(self,data):
#返回卷积和池化后的数据,用于查看图像
data_test = np.asmatrix(data)
data_focus1, data_conved1 = self.Convolute(data_test, self.conv1, self.w_conv1,
self.thre_conv1, conv_step=self.step_conv1)
data_pooled1 = self.Pooling(data_conved1, self.size_pooling1)
return data_conved1,data_pooled1