mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Add conjugate gradient method algorithm (#2486)
* Initial commit of the conjugate gradient method * Update linear_algebra/src/conjugate_gradient.py * Added documentation links, changed variable names to lower case and more descriptive naming, added check for symmetry in _is_matrix_spd * Made changes to some variable naming to be more clear * Update conjugate_gradient.py Co-authored-by: Zeyad Zaky <zeyadzaky@Zeyads-MacBook-Pro.local> Co-authored-by: Christian Clauss <cclauss@me.com> Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
This commit is contained in:
parent
110a740d5d
commit
533e36d32b
173
linear_algebra/src/conjugate_gradient.py
Normal file
173
linear_algebra/src/conjugate_gradient.py
Normal file
|
@ -0,0 +1,173 @@
|
|||
"""
|
||||
Resources:
|
||||
- https://en.wikipedia.org/wiki/Conjugate_gradient_method
|
||||
- https://en.wikipedia.org/wiki/Definite_symmetric_matrix
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
|
||||
def _is_matrix_spd(matrix: np.array) -> bool:
|
||||
"""
|
||||
Returns True if input matrix is symmetric positive definite.
|
||||
Returns False otherwise.
|
||||
|
||||
For a matrix to be SPD, all eigenvalues must be positive.
|
||||
|
||||
>>> import numpy as np
|
||||
>>> matrix = np.array([
|
||||
... [4.12401784, -5.01453636, -0.63865857],
|
||||
... [-5.01453636, 12.33347422, -3.40493586],
|
||||
... [-0.63865857, -3.40493586, 5.78591885]])
|
||||
>>> _is_matrix_spd(matrix)
|
||||
True
|
||||
>>> matrix = np.array([
|
||||
... [0.34634879, 1.96165514, 2.18277744],
|
||||
... [0.74074469, -1.19648894, -1.34223498],
|
||||
... [-0.7687067 , 0.06018373, -1.16315631]])
|
||||
>>> _is_matrix_spd(matrix)
|
||||
False
|
||||
"""
|
||||
# Ensure matrix is square.
|
||||
assert np.shape(matrix)[0] == np.shape(matrix)[1]
|
||||
|
||||
# If matrix not symmetric, exit right away.
|
||||
if np.allclose(matrix, matrix.T) is False:
|
||||
return False
|
||||
|
||||
# Get eigenvalues and eignevectors for a symmetric matrix.
|
||||
eigen_values, _ = np.linalg.eigh(matrix)
|
||||
|
||||
# Check sign of all eigenvalues.
|
||||
return np.all(eigen_values > 0)
|
||||
|
||||
|
||||
def _create_spd_matrix(dimension: np.int64) -> np.array:
|
||||
"""
|
||||
Returns a symmetric positive definite matrix given a dimension.
|
||||
|
||||
Input:
|
||||
dimension gives the square matrix dimension.
|
||||
|
||||
Output:
|
||||
spd_matrix is an diminesion x dimensions symmetric positive definite (SPD) matrix.
|
||||
|
||||
>>> import numpy as np
|
||||
>>> dimension = 3
|
||||
>>> spd_matrix = _create_spd_matrix(dimension)
|
||||
>>> _is_matrix_spd(spd_matrix)
|
||||
True
|
||||
"""
|
||||
random_matrix = np.random.randn(dimension, dimension)
|
||||
spd_matrix = np.dot(random_matrix, random_matrix.T)
|
||||
assert _is_matrix_spd(spd_matrix)
|
||||
return spd_matrix
|
||||
|
||||
|
||||
def conjugate_gradient(
|
||||
spd_matrix: np.array,
|
||||
load_vector: np.array,
|
||||
max_iterations: int = 1000,
|
||||
tol: float = 1e-8,
|
||||
) -> np.array:
|
||||
"""
|
||||
Returns solution to the linear system np.dot(spd_matrix, x) = b.
|
||||
|
||||
Input:
|
||||
spd_matrix is an NxN Symmetric Positive Definite (SPD) matrix.
|
||||
load_vector is an Nx1 vector.
|
||||
|
||||
Output:
|
||||
x is an Nx1 vector that is the solution vector.
|
||||
|
||||
>>> import numpy as np
|
||||
>>> spd_matrix = np.array([
|
||||
... [8.73256573, -5.02034289, -2.68709226],
|
||||
... [-5.02034289, 3.78188322, 0.91980451],
|
||||
... [-2.68709226, 0.91980451, 1.94746467]])
|
||||
>>> b = np.array([
|
||||
... [-5.80872761],
|
||||
... [ 3.23807431],
|
||||
... [ 1.95381422]])
|
||||
>>> conjugate_gradient(spd_matrix, b)
|
||||
array([[-0.63114139],
|
||||
[-0.01561498],
|
||||
[ 0.13979294]])
|
||||
"""
|
||||
# Ensure proper dimensionality.
|
||||
assert np.shape(spd_matrix)[0] == np.shape(spd_matrix)[1]
|
||||
assert np.shape(load_vector)[0] == np.shape(spd_matrix)[0]
|
||||
assert _is_matrix_spd(spd_matrix)
|
||||
|
||||
# Initialize solution guess, residual, search direction.
|
||||
x0 = np.zeros((np.shape(load_vector)[0], 1))
|
||||
r0 = np.copy(load_vector)
|
||||
p0 = np.copy(r0)
|
||||
|
||||
# Set initial errors in solution guess and residual.
|
||||
error_residual = 1e9
|
||||
error_x_solution = 1e9
|
||||
error = 1e9
|
||||
|
||||
# Set iteration counter to threshold number of iterations.
|
||||
iterations = 0
|
||||
|
||||
while error > tol:
|
||||
|
||||
# Save this value so we only calculate the matrix-vector product once.
|
||||
w = np.dot(spd_matrix, p0)
|
||||
|
||||
# The main algorithm.
|
||||
|
||||
# Update search direction magnitude.
|
||||
alpha = np.dot(r0.T, r0) / np.dot(p0.T, w)
|
||||
# Update solution guess.
|
||||
x = x0 + alpha * p0
|
||||
# Calculate new residual.
|
||||
r = r0 - alpha * w
|
||||
# Calculate new Krylov subspace scale.
|
||||
beta = np.dot(r.T, r) / np.dot(r0.T, r0)
|
||||
# Calculate new A conjuage search direction.
|
||||
p = r + beta * p0
|
||||
|
||||
# Calculate errors.
|
||||
error_residual = np.linalg.norm(r - r0)
|
||||
error_x_solution = np.linalg.norm(x - x0)
|
||||
error = np.maximum(error_residual, error_x_solution)
|
||||
|
||||
# Update variables.
|
||||
x0 = np.copy(x)
|
||||
r0 = np.copy(r)
|
||||
p0 = np.copy(p)
|
||||
|
||||
# Update number of iterations.
|
||||
iterations += 1
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def test_conjugate_gradient() -> None:
|
||||
"""
|
||||
>>> test_conjugate_gradient() # self running tests
|
||||
"""
|
||||
# Create linear system with SPD matrix and known solution x_true.
|
||||
dimension = 3
|
||||
spd_matrix = _create_spd_matrix(dimension)
|
||||
x_true = np.random.randn(dimension, 1)
|
||||
b = np.dot(spd_matrix, x_true)
|
||||
|
||||
# Numpy solution.
|
||||
x_numpy = np.linalg.solve(spd_matrix, b)
|
||||
|
||||
# Our implementation.
|
||||
x_conjugate_gradient = conjugate_gradient(spd_matrix, b)
|
||||
|
||||
# Ensure both solutions are close to x_true (and therefore one another).
|
||||
assert np.linalg.norm(x_numpy - x_true) <= 1e-6
|
||||
assert np.linalg.norm(x_conjugate_gradient - x_true) <= 1e-6
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
test_conjugate_gradient()
|
Loading…
Reference in New Issue
Block a user