Merge pull request #6 from SergeyTsaplin/bin-search-pythonic

Bin search refactored pythonic way
This commit is contained in:
Harshil 2016-07-29 19:52:03 +05:30 committed by GitHub
commit 53780885a3
2 changed files with 129 additions and 30 deletions

View File

@ -1,30 +0,0 @@
def binarySearch(alist, item):
first = 0
last = len(alist)-1
found = False
while first<=last and not found:
midpoint = (first + last)//2
if alist[midpoint] == item:
found = True
print("Found [ at position: %s ]" % (alist.index(item) + 1))
else:
if item < alist[midpoint]:
last = midpoint-1
else:
first = midpoint+1
if found == False:
continue
# print("Not found")
return found
print("Enter numbers seprated by space")
s = input()
numbers = list(map(int, s.split()))
trgt =int( input('enter a single number to be found in the list '))
binarySearch(numbers, trgt)

129
binary_seach.py Normal file
View File

@ -0,0 +1,129 @@
"""
This is pure python implementation of binary search algorithm
For doctests run following command:
python -m doctest -v selection_sort.py
or
python3 -m doctest -v selection_sort.py
For manual testing run:
python binary_search.py
"""
from __future__ import print_function
import bisect
def assert_sorted(collection):
"""Check if collection is sorted. If not raises :py:class:`ValueError`
:param collection: collection
:return: True if collection is sorted
:raise: :py:class:`ValueError` if collection is not sorted
Examples:
>>> assert_sorted([0, 1, 2, 4])
True
>>> assert_sorted([10, -1, 5])
Traceback (most recent call last):
...
ValueError: Collection must be sorted
"""
if collection != sorted(collection):
raise ValueError('Collection must be sorted')
return True
def binary_search(sorted_collection, item):
"""Pure implementation of binary search algorithm in Python
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search([0, 5, 7, 10, 15], 0)
0
>>> binary_search([0, 5, 7, 10, 15], 15)
4
>>> binary_search([0, 5, 7, 10, 15], 5)
1
>>> binary_search([0, 5, 7, 10, 15], 6)
>>> binary_search([5, 2, 1, 5], 2)
Traceback (most recent call last):
...
ValueError: Collection must be sorted
"""
assert_sorted(sorted_collection)
left = 0
right = len(sorted_collection) - 1
while left <= right:
midpoint = (left + right) // 2
current_item = sorted_collection[midpoint]
if current_item == item:
return midpoint
else:
if item < current_item:
right = midpoint - 1
else:
left = midpoint + 1
return None
def binary_search_std_lib(sorted_collection, item):
"""Pure implementation of binary search algorithm in Python using stdlib
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
0
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
4
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
1
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
>>> binary_search_std_lib([5, 2, 1, 5], 2)
Traceback (most recent call last):
...
ValueError: Collection must be sorted
"""
assert_sorted(sorted_collection)
index = bisect.bisect_left(sorted_collection, item)
if index != len(sorted_collection) and sorted_collection[index] == item:
return index
return None
if __name__ == '__main__':
import sys
# For python 2.x and 3.x compatibility: 3.x has not raw_input builtin
# otherwise 2.x's input builtin function is too "smart"
if sys.version_info.major < 3:
input_function = raw_input
else:
input_function = input
user_input = input_function('Enter numbers separated by coma:\n')
collection = [int(item) for item in user_input.split(',')]
target_input = input_function(
'Enter a single number to be found in the list:\n'
)
target = int(target_input)
result = binary_search(collection, target)
if result is not None:
print('{} found at positions: {}'.format(target, result))
else:
print('Not found')