added type hints and doctests for minimax algorithm (#2478)

* added type hints and doctests for minimax algorithm

* Update backtracking/minimax.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* last fix

Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Abdujabbar Mirkhalikov 2020-09-25 18:16:05 +05:00 committed by GitHub
parent daa1b4d70f
commit 53c2a24587
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,3 +1,4 @@
from __future__ import annotations
import math
""" Minimax helps to achieve maximum score in a game by checking all possible moves
@ -9,26 +10,62 @@ import math
"""
def minimax(Depth, nodeIndex, isMax, scores, height):
def minimax(depth: int, node_index: int, is_max: bool,
scores: list[int], height: float) -> int:
"""
>>> import math
>>> scores = [90, 23, 6, 33, 21, 65, 123, 34423]
>>> height = math.log(len(scores), 2)
>>> minimax(0, 0, True, scores, height)
65
>>> minimax(-1, 0, True, scores, height)
Traceback (most recent call last):
...
ValueError: Depth cannot be less than 0
>>> minimax(0, 0, True, [], 2)
Traceback (most recent call last):
...
ValueError: Scores cannot be empty
>>> scores = [3, 5, 2, 9, 12, 5, 23, 23]
>>> height = math.log(len(scores), 2)
>>> minimax(0, 0, True, scores, height)
12
>>> minimax('1', 2, True, [], 2 )
Traceback (most recent call last):
...
TypeError: '<' not supported between instances of 'str' and 'int'
"""
if Depth == height:
return scores[nodeIndex]
if depth < 0:
raise ValueError("Depth cannot be less than 0")
if isMax:
if len(scores) == 0:
raise ValueError("Scores cannot be empty")
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(Depth + 1, nodeIndex * 2, False, scores, height),
minimax(Depth + 1, nodeIndex * 2 + 1, False, scores, height),
minimax(depth + 1, node_index * 2, False, scores, height),
minimax(depth + 1, node_index * 2 + 1, False, scores, height),
)
return min(
minimax(Depth + 1, nodeIndex * 2, True, scores, height),
minimax(Depth + 1, nodeIndex * 2 + 1, True, scores, height),
minimax(depth + 1, node_index * 2, True, scores, height),
minimax(depth + 1, node_index * 2 + 1, True, scores, height),
)
if __name__ == "__main__":
def main():
scores = [90, 23, 6, 33, 21, 65, 123, 34423]
height = math.log(len(scores), 2)
print("Optimal value : ", end="")
print(minimax(0, 0, True, scores, height))
if __name__ == "__main__":
import doctest
doctest.testmod()
main()