mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
resolved conflicts
This commit is contained in:
parent
c76784e708
commit
544a38b016
|
@ -3,22 +3,21 @@ import pandas as pd
|
|||
|
||||
|
||||
class RidgeRegression:
|
||||
def __init__(
|
||||
self,
|
||||
alpha: float = 0.001,
|
||||
regularization_param: float = 0.1,
|
||||
num_iterations: int = 1000,
|
||||
) -> None:
|
||||
def __init__(self,
|
||||
alpha: float = 0.001,
|
||||
regularization_param: float = 0.1,
|
||||
num_iterations: int = 1000,
|
||||
) -> None:
|
||||
self.alpha: float = alpha
|
||||
self.regularization_param: float = regularization_param
|
||||
self.num_iterations: int = num_iterations
|
||||
self.theta: np.ndarray = None
|
||||
|
||||
def feature_scaling(
|
||||
self, X: np.ndarray
|
||||
self, x: np.ndarray
|
||||
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
mean = np.mean(X, axis=0)
|
||||
std = np.std(X, axis=0)
|
||||
mean = np.mean(x, axis=0)
|
||||
std = np.std(x, axis=0)
|
||||
|
||||
# avoid division by zero for constant features (std = 0)
|
||||
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
|
||||
|
@ -31,7 +30,7 @@ class RidgeRegression:
|
|||
m, n = x_scaled.shape
|
||||
self.theta = np.zeros(n) # initializing weights to zeros
|
||||
|
||||
for i in range(self.num_iterations):
|
||||
for _ in range(self.num_iterations):
|
||||
predictions = x_scaled.dot(self.theta)
|
||||
error = predictions - y
|
||||
|
||||
|
@ -41,18 +40,19 @@ class RidgeRegression:
|
|||
) / m
|
||||
self.theta -= self.alpha * gradient # updating weights
|
||||
|
||||
def predict(self, X: np.ndarray) -> np.ndarray:
|
||||
X_scaled, _, _ = self.feature_scaling(X)
|
||||
return X_scaled.dot(self.theta)
|
||||
def predict(self, x: np.ndarray) -> np.ndarray:
|
||||
x_scaled, _, _ = self.feature_scaling(x)
|
||||
return x_scaled.dot(self.theta)
|
||||
|
||||
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
|
||||
x_scaled, _, _ = self.feature_scaling(x)
|
||||
m = len(y)
|
||||
|
||||
predictions = x_scaled.dot(self.theta)
|
||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||
self.regularization_param / (2 * m)
|
||||
) * np.sum(self.theta**2)
|
||||
cost = (
|
||||
1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||
self.regularization_param / (2 * m)
|
||||
) * np.sum(self.theta**2)
|
||||
return cost
|
||||
|
||||
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
|
@ -61,9 +61,9 @@ class RidgeRegression:
|
|||
|
||||
# Example usage
|
||||
if __name__ == "__main__":
|
||||
df = pd.read_csv("ADRvsRating.csv")
|
||||
x = df[["Rating"]].values
|
||||
y = df["ADR"].values
|
||||
data = pd.read_csv("ADRvsRating.csv")
|
||||
x = data[["Rating"]].to_numpy()
|
||||
y = data["ADR"].to_numpy()
|
||||
y = (y - np.mean(y)) / np.std(y)
|
||||
|
||||
# added bias term to the feature matrix
|
||||
|
|
Loading…
Reference in New Issue
Block a user