mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
resolved conflicts
This commit is contained in:
parent
c76784e708
commit
544a38b016
|
@ -3,8 +3,7 @@ import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
class RidgeRegression:
|
class RidgeRegression:
|
||||||
def __init__(
|
def __init__(self,
|
||||||
self,
|
|
||||||
alpha: float = 0.001,
|
alpha: float = 0.001,
|
||||||
regularization_param: float = 0.1,
|
regularization_param: float = 0.1,
|
||||||
num_iterations: int = 1000,
|
num_iterations: int = 1000,
|
||||||
|
@ -15,10 +14,10 @@ class RidgeRegression:
|
||||||
self.theta: np.ndarray = None
|
self.theta: np.ndarray = None
|
||||||
|
|
||||||
def feature_scaling(
|
def feature_scaling(
|
||||||
self, X: np.ndarray
|
self, x: np.ndarray
|
||||||
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||||
mean = np.mean(X, axis=0)
|
mean = np.mean(x, axis=0)
|
||||||
std = np.std(X, axis=0)
|
std = np.std(x, axis=0)
|
||||||
|
|
||||||
# avoid division by zero for constant features (std = 0)
|
# avoid division by zero for constant features (std = 0)
|
||||||
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
|
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
|
||||||
|
@ -31,7 +30,7 @@ class RidgeRegression:
|
||||||
m, n = x_scaled.shape
|
m, n = x_scaled.shape
|
||||||
self.theta = np.zeros(n) # initializing weights to zeros
|
self.theta = np.zeros(n) # initializing weights to zeros
|
||||||
|
|
||||||
for i in range(self.num_iterations):
|
for _ in range(self.num_iterations):
|
||||||
predictions = x_scaled.dot(self.theta)
|
predictions = x_scaled.dot(self.theta)
|
||||||
error = predictions - y
|
error = predictions - y
|
||||||
|
|
||||||
|
@ -41,16 +40,17 @@ class RidgeRegression:
|
||||||
) / m
|
) / m
|
||||||
self.theta -= self.alpha * gradient # updating weights
|
self.theta -= self.alpha * gradient # updating weights
|
||||||
|
|
||||||
def predict(self, X: np.ndarray) -> np.ndarray:
|
def predict(self, x: np.ndarray) -> np.ndarray:
|
||||||
X_scaled, _, _ = self.feature_scaling(X)
|
x_scaled, _, _ = self.feature_scaling(x)
|
||||||
return X_scaled.dot(self.theta)
|
return x_scaled.dot(self.theta)
|
||||||
|
|
||||||
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
|
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
|
||||||
x_scaled, _, _ = self.feature_scaling(x)
|
x_scaled, _, _ = self.feature_scaling(x)
|
||||||
m = len(y)
|
m = len(y)
|
||||||
|
|
||||||
predictions = x_scaled.dot(self.theta)
|
predictions = x_scaled.dot(self.theta)
|
||||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
cost = (
|
||||||
|
1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||||
self.regularization_param / (2 * m)
|
self.regularization_param / (2 * m)
|
||||||
) * np.sum(self.theta**2)
|
) * np.sum(self.theta**2)
|
||||||
return cost
|
return cost
|
||||||
|
@ -61,9 +61,9 @@ class RidgeRegression:
|
||||||
|
|
||||||
# Example usage
|
# Example usage
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
df = pd.read_csv("ADRvsRating.csv")
|
data = pd.read_csv("ADRvsRating.csv")
|
||||||
x = df[["Rating"]].values
|
x = data[["Rating"]].to_numpy()
|
||||||
y = df["ADR"].values
|
y = data["ADR"].to_numpy()
|
||||||
y = (y - np.mean(y)) / np.std(y)
|
y = (y - np.mean(y)) / np.std(y)
|
||||||
|
|
||||||
# added bias term to the feature matrix
|
# added bias term to the feature matrix
|
||||||
|
|
Loading…
Reference in New Issue
Block a user