mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Enhance readability of Minimax (#10838)
* Enhance readability of Minimax * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Reduce line overflow * Update backtracking/minimax.py Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com> * Update backtracking/minimax.py Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com> * Update backtracking/minimax.py Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com> * Remove line overflow --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
4cbefadbd7
commit
54e2aa67e8
|
@ -16,6 +16,22 @@ def minimax(
|
|||
depth: int, node_index: int, is_max: bool, scores: list[int], height: float
|
||||
) -> int:
|
||||
"""
|
||||
This function implements the minimax algorithm, which helps achieve the optimal
|
||||
score for a player in a two-player game by checking all possible moves.
|
||||
If the player is the maximizer, then the score is maximized.
|
||||
If the player is the minimizer, then the score is minimized.
|
||||
|
||||
Parameters:
|
||||
- depth: Current depth in the game tree.
|
||||
- node_index: Index of the current node in the scores list.
|
||||
- is_max: A boolean indicating whether the current move
|
||||
is for the maximizer (True) or minimizer (False).
|
||||
- scores: A list containing the scores of the leaves of the game tree.
|
||||
- height: The maximum height of the game tree.
|
||||
|
||||
Returns:
|
||||
- An integer representing the optimal score for the current player.
|
||||
|
||||
>>> import math
|
||||
>>> scores = [90, 23, 6, 33, 21, 65, 123, 34423]
|
||||
>>> height = math.log(len(scores), 2)
|
||||
|
@ -37,19 +53,24 @@ def minimax(
|
|||
|
||||
if depth < 0:
|
||||
raise ValueError("Depth cannot be less than 0")
|
||||
|
||||
if len(scores) == 0:
|
||||
raise ValueError("Scores cannot be empty")
|
||||
|
||||
# Base case: If the current depth equals the height of the tree,
|
||||
# return the score of the current node.
|
||||
if depth == height:
|
||||
return scores[node_index]
|
||||
|
||||
# If it's the maximizer's turn, choose the maximum score
|
||||
# between the two possible moves.
|
||||
if is_max:
|
||||
return max(
|
||||
minimax(depth + 1, node_index * 2, False, scores, height),
|
||||
minimax(depth + 1, node_index * 2 + 1, False, scores, height),
|
||||
)
|
||||
|
||||
# If it's the minimizer's turn, choose the minimum score
|
||||
# between the two possible moves.
|
||||
return min(
|
||||
minimax(depth + 1, node_index * 2, True, scores, height),
|
||||
minimax(depth + 1, node_index * 2 + 1, True, scores, height),
|
||||
|
@ -57,8 +78,11 @@ def minimax(
|
|||
|
||||
|
||||
def main() -> None:
|
||||
# Sample scores and height calculation
|
||||
scores = [90, 23, 6, 33, 21, 65, 123, 34423]
|
||||
height = math.log(len(scores), 2)
|
||||
|
||||
# Calculate and print the optimal value using the minimax algorithm
|
||||
print("Optimal value : ", end="")
|
||||
print(minimax(0, 0, True, scores, height))
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user