diff --git a/linear_algebra/src/power_iteration.py b/linear_algebra/src/power_iteration.py index 2cf22838e..4c6525b6e 100644 --- a/linear_algebra/src/power_iteration.py +++ b/linear_algebra/src/power_iteration.py @@ -9,10 +9,10 @@ def power_iteration( ) -> tuple[float, np.ndarray]: """ Power Iteration. - Find the largest eignevalue and corresponding eigenvector + Find the largest eigenvalue and corresponding eigenvector of matrix input_matrix given a random vector in the same space. Will work so long as vector has component of largest eigenvector. - input_matrix must be symmetric. + input_matrix must be either real or Hermitian. Input input_matrix: input matrix whose largest eigenvalue we will find. @@ -41,6 +41,12 @@ def power_iteration( assert np.shape(input_matrix)[0] == np.shape(input_matrix)[1] # Ensure proper dimensionality. assert np.shape(input_matrix)[0] == np.shape(vector)[0] + # Ensure inputs are either both complex or both real + assert np.iscomplexobj(input_matrix) == np.iscomplexobj(vector) + is_complex = np.iscomplexobj(input_matrix) + if is_complex: + # Ensure complex input_matrix is Hermitian + assert np.array_equal(input_matrix, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. @@ -57,7 +63,8 @@ def power_iteration( vector = w / np.linalg.norm(w) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) - lamda = np.dot(vector.T, np.dot(input_matrix, vector)) + vectorH = vector.conj().T if is_complex else vector.T + lamda = np.dot(vectorH, np.dot(input_matrix, vector)) # Check convergence. error = np.abs(lamda - lamda_previous) / lamda @@ -68,6 +75,9 @@ def power_iteration( lamda_previous = lamda + if is_complex: + lamda = np.real(lamda) + return lamda, vector @@ -75,26 +85,40 @@ def test_power_iteration() -> None: """ >>> test_power_iteration() # self running tests """ - # Our implementation. - input_matrix = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]]) - vector = np.array([41, 4, 20]) - eigen_value, eigen_vector = power_iteration(input_matrix, vector) + real_input_matrix = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]]) + real_vector = np.array([41, 4, 20]) + complex_input_matrix = real_input_matrix.astype(np.complex128) + imag_matrix = np.triu(1j * complex_input_matrix, 1) + complex_input_matrix += imag_matrix + complex_input_matrix += -1 * imag_matrix.T + complex_vector = np.array([41, 4, 20]).astype(np.complex128) - # Numpy implementation. + for problem_type in ["real", "complex"]: + if problem_type == "real": + input_matrix = real_input_matrix + vector = real_vector + elif problem_type == "complex": + input_matrix = complex_input_matrix + vector = complex_vector - # Get eigen values and eigen vectors using built in numpy - # eigh (eigh used for symmetric or hermetian matrices). - eigen_values, eigen_vectors = np.linalg.eigh(input_matrix) - # Last eigen value is the maximum one. - eigen_value_max = eigen_values[-1] - # Last column in this matrix is eigen vector corresponding to largest eigen value. - eigen_vector_max = eigen_vectors[:, -1] + # Our implementation. + eigen_value, eigen_vector = power_iteration(input_matrix, vector) - # Check our implementation and numpy gives close answers. - assert np.abs(eigen_value - eigen_value_max) <= 1e-6 - # Take absolute values element wise of each eigenvector. - # as they are only unique to a minus sign. - assert np.linalg.norm(np.abs(eigen_vector) - np.abs(eigen_vector_max)) <= 1e-6 + # Numpy implementation. + + # Get eigenvalues and eigenvectors using built-in numpy + # eigh (eigh used for symmetric or hermetian matrices). + eigen_values, eigen_vectors = np.linalg.eigh(input_matrix) + # Last eigenvalue is the maximum one. + eigen_value_max = eigen_values[-1] + # Last column in this matrix is eigenvector corresponding to largest eigenvalue. + eigen_vector_max = eigen_vectors[:, -1] + + # Check our implementation and numpy gives close answers. + assert np.abs(eigen_value - eigen_value_max) <= 1e-6 + # Take absolute values element wise of each eigenvector. + # as they are only unique to a minus sign. + assert np.linalg.norm(np.abs(eigen_vector) - np.abs(eigen_vector_max)) <= 1e-6 if __name__ == "__main__":