mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Merge a33e39ae2c
into e3bd7721c8
This commit is contained in:
commit
55f5601154
|
@ -41,6 +41,15 @@ def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta):
|
|||
:param theta : Feature vector (weight's for our model)
|
||||
;param return : Updated Feature's, using
|
||||
curr_features - alpha_ * gradient(w.r.t. feature)
|
||||
|
||||
>>> data_x = np.array([[1, 2], [1, 3], [1, 4]])
|
||||
>>> data_y = np.array([[2], [2], [2]])
|
||||
>>> theta = np.array([[0.0, 0.0]])
|
||||
>>> alpha = 0.01
|
||||
>>> len_data = len(data_x)
|
||||
>>> new_theta = run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta)
|
||||
>>> new_theta.round(2)
|
||||
array([[0.02, 0.06]])
|
||||
"""
|
||||
n = len_data
|
||||
|
||||
|
@ -89,10 +98,17 @@ def run_linear_regression(data_x, data_y):
|
|||
|
||||
|
||||
def mean_absolute_error(predicted_y, original_y):
|
||||
"""Return sum of square error for error calculation
|
||||
"""
|
||||
Return sum of square error for error calculation
|
||||
|
||||
:param predicted_y : contains the output of prediction (result vector)
|
||||
:param original_y : contains values of expected outcome
|
||||
:return : mean absolute error computed from given feature's
|
||||
|
||||
>>> mean_absolute_error([3.0, 2.0, 1.0], [2.5, 2.0, 1.0])
|
||||
0.16666666666666666
|
||||
>>> mean_absolute_error([5.0, 6.0], [5.0, 7.0])
|
||||
0.5
|
||||
"""
|
||||
total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
|
||||
return total / len(original_y)
|
||||
|
|
Loading…
Reference in New Issue
Block a user