mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-19 21:19:47 +00:00
Consolidate loss functions into a single file (#10737)
* Consolidate loss functions into single file * updating DIRECTORY.md * Fix typo --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
52a987ea2f
commit
5645084dcd
@ -549,13 +549,7 @@
|
||||
* Local Weighted Learning
|
||||
* [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py)
|
||||
* [Logistic Regression](machine_learning/logistic_regression.py)
|
||||
* Loss Functions
|
||||
* [Binary Cross Entropy](machine_learning/loss_functions/binary_cross_entropy.py)
|
||||
* [Categorical Cross Entropy](machine_learning/loss_functions/categorical_cross_entropy.py)
|
||||
* [Hinge Loss](machine_learning/loss_functions/hinge_loss.py)
|
||||
* [Huber Loss](machine_learning/loss_functions/huber_loss.py)
|
||||
* [Mean Squared Error](machine_learning/loss_functions/mean_squared_error.py)
|
||||
* [Mean Squared Logarithmic Error](machine_learning/loss_functions/mean_squared_logarithmic_error.py)
|
||||
* [Loss Functions](machine_learning/loss_functions.py)
|
||||
* [Mfcc](machine_learning/mfcc.py)
|
||||
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
|
||||
* [Polynomial Regression](machine_learning/polynomial_regression.py)
|
||||
|
252
machine_learning/loss_functions.py
Normal file
252
machine_learning/loss_functions.py
Normal file
@ -0,0 +1,252 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
def binary_cross_entropy(
|
||||
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the mean binary cross-entropy (BCE) loss between true labels and predicted
|
||||
probabilities.
|
||||
|
||||
BCE loss quantifies dissimilarity between true labels (0 or 1) and predicted
|
||||
probabilities. It's widely used in binary classification tasks.
|
||||
|
||||
BCE = -Σ(y_true * ln(y_pred) + (1 - y_true) * ln(1 - y_pred))
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Cross_entropy
|
||||
|
||||
Parameters:
|
||||
- y_true: True binary labels (0 or 1)
|
||||
- y_pred: Predicted probabilities for class 1
|
||||
- epsilon: Small constant to avoid numerical instability
|
||||
|
||||
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
||||
>>> predicted_probs = np.array([0.2, 0.7, 0.9, 0.3, 0.8])
|
||||
>>> binary_cross_entropy(true_labels, predicted_probs)
|
||||
0.2529995012327421
|
||||
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
||||
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||
>>> binary_cross_entropy(true_labels, predicted_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
y_pred = np.clip(y_pred, epsilon, 1 - epsilon) # Clip predictions to avoid log(0)
|
||||
bce_loss = -(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
|
||||
return np.mean(bce_loss)
|
||||
|
||||
|
||||
def categorical_cross_entropy(
|
||||
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
||||
) -> float:
|
||||
"""
|
||||
Calculate categorical cross-entropy (CCE) loss between true class labels and
|
||||
predicted class probabilities.
|
||||
|
||||
CCE = -Σ(y_true * ln(y_pred))
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Cross_entropy
|
||||
|
||||
Parameters:
|
||||
- y_true: True class labels (one-hot encoded)
|
||||
- y_pred: Predicted class probabilities
|
||||
- epsilon: Small constant to avoid numerical instability
|
||||
|
||||
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
||||
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]])
|
||||
>>> categorical_cross_entropy(true_labels, pred_probs)
|
||||
0.567395975254385
|
||||
>>> true_labels = np.array([[1, 0], [0, 1]])
|
||||
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
||||
>>> categorical_cross_entropy(true_labels, pred_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same shape.
|
||||
>>> true_labels = np.array([[2, 0, 1], [1, 0, 0]])
|
||||
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
||||
>>> categorical_cross_entropy(true_labels, pred_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: y_true must be one-hot encoded.
|
||||
>>> true_labels = np.array([[1, 0, 1], [1, 0, 0]])
|
||||
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
||||
>>> categorical_cross_entropy(true_labels, pred_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: y_true must be one-hot encoded.
|
||||
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0]])
|
||||
>>> pred_probs = np.array([[0.9, 0.1, 0.1], [0.2, 0.7, 0.1]])
|
||||
>>> categorical_cross_entropy(true_labels, pred_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Predicted probabilities must sum to approximately 1.
|
||||
"""
|
||||
if y_true.shape != y_pred.shape:
|
||||
raise ValueError("Input arrays must have the same shape.")
|
||||
|
||||
if np.any((y_true != 0) & (y_true != 1)) or np.any(y_true.sum(axis=1) != 1):
|
||||
raise ValueError("y_true must be one-hot encoded.")
|
||||
|
||||
if not np.all(np.isclose(np.sum(y_pred, axis=1), 1, rtol=epsilon, atol=epsilon)):
|
||||
raise ValueError("Predicted probabilities must sum to approximately 1.")
|
||||
|
||||
y_pred = np.clip(y_pred, epsilon, 1) # Clip predictions to avoid log(0)
|
||||
return -np.sum(y_true * np.log(y_pred))
|
||||
|
||||
|
||||
def hinge_loss(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Calculate the mean hinge loss for between true labels and predicted probabilities
|
||||
for training support vector machines (SVMs).
|
||||
|
||||
Hinge loss = max(0, 1 - true * pred)
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Hinge_loss
|
||||
|
||||
Args:
|
||||
- y_true: actual values (ground truth) encoded as -1 or 1
|
||||
- y_pred: predicted values
|
||||
|
||||
>>> true_labels = np.array([-1, 1, 1, -1, 1])
|
||||
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
|
||||
>>> hinge_loss(true_labels, pred)
|
||||
1.52
|
||||
>>> true_labels = np.array([-1, 1, 1, -1, 1, 1])
|
||||
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
|
||||
>>> hinge_loss(true_labels, pred)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Length of predicted and actual array must be same.
|
||||
>>> true_labels = np.array([-1, 1, 10, -1, 1])
|
||||
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
|
||||
>>> hinge_loss(true_labels, pred)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: y_true can have values -1 or 1 only.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Length of predicted and actual array must be same.")
|
||||
|
||||
if np.any((y_true != -1) & (y_true != 1)):
|
||||
raise ValueError("y_true can have values -1 or 1 only.")
|
||||
|
||||
hinge_losses = np.maximum(0, 1.0 - (y_true * y_pred))
|
||||
return np.mean(hinge_losses)
|
||||
|
||||
|
||||
def huber_loss(y_true: np.ndarray, y_pred: np.ndarray, delta: float) -> float:
|
||||
"""
|
||||
Calculate the mean Huber loss between the given ground truth and predicted values.
|
||||
|
||||
The Huber loss describes the penalty incurred by an estimation procedure, and it
|
||||
serves as a measure of accuracy for regression models.
|
||||
|
||||
Huber loss =
|
||||
0.5 * (y_true - y_pred)^2 if |y_true - y_pred| <= delta
|
||||
delta * |y_true - y_pred| - 0.5 * delta^2 otherwise
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Huber_loss
|
||||
|
||||
Parameters:
|
||||
- y_true: The true values (ground truth)
|
||||
- y_pred: The predicted values
|
||||
|
||||
>>> true_values = np.array([0.9, 10.0, 2.0, 1.0, 5.2])
|
||||
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||
>>> np.isclose(huber_loss(true_values, predicted_values, 1.0), 2.102)
|
||||
True
|
||||
>>> true_labels = np.array([11.0, 21.0, 3.32, 4.0, 5.0])
|
||||
>>> predicted_probs = np.array([8.3, 20.8, 2.9, 11.2, 5.0])
|
||||
>>> np.isclose(huber_loss(true_labels, predicted_probs, 1.0), 1.80164)
|
||||
True
|
||||
>>> true_labels = np.array([11.0, 21.0, 3.32, 4.0])
|
||||
>>> predicted_probs = np.array([8.3, 20.8, 2.9, 11.2, 5.0])
|
||||
>>> huber_loss(true_labels, predicted_probs, 1.0)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
huber_mse = 0.5 * (y_true - y_pred) ** 2
|
||||
huber_mae = delta * (np.abs(y_true - y_pred) - 0.5 * delta)
|
||||
return np.where(np.abs(y_true - y_pred) <= delta, huber_mse, huber_mae).mean()
|
||||
|
||||
|
||||
def mean_squared_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Calculate the mean squared error (MSE) between ground truth and predicted values.
|
||||
|
||||
MSE measures the squared difference between true values and predicted values, and it
|
||||
serves as a measure of accuracy for regression models.
|
||||
|
||||
MSE = (1/n) * Σ(y_true - y_pred)^2
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Mean_squared_error
|
||||
|
||||
Parameters:
|
||||
- y_true: The true values (ground truth)
|
||||
- y_pred: The predicted values
|
||||
|
||||
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||
>>> np.isclose(mean_squared_error(true_values, predicted_values), 0.028)
|
||||
True
|
||||
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||
>>> mean_squared_error(true_labels, predicted_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
squared_errors = (y_true - y_pred) ** 2
|
||||
return np.mean(squared_errors)
|
||||
|
||||
|
||||
def mean_squared_logarithmic_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Calculate the mean squared logarithmic error (MSLE) between ground truth and
|
||||
predicted values.
|
||||
|
||||
MSLE measures the squared logarithmic difference between true values and predicted
|
||||
values for regression models. It's particularly useful for dealing with skewed or
|
||||
large-value data, and it's often used when the relative differences between
|
||||
predicted and true values are more important than absolute differences.
|
||||
|
||||
MSLE = (1/n) * Σ(log(1 + y_true) - log(1 + y_pred))^2
|
||||
|
||||
Reference: https://insideaiml.com/blog/MeanSquared-Logarithmic-Error-Loss-1035
|
||||
|
||||
Parameters:
|
||||
- y_true: The true values (ground truth)
|
||||
- y_pred: The predicted values
|
||||
|
||||
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||
>>> mean_squared_logarithmic_error(true_values, predicted_values)
|
||||
0.0030860877925181344
|
||||
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||
>>> mean_squared_logarithmic_error(true_labels, predicted_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
squared_logarithmic_errors = (np.log1p(y_true) - np.log1p(y_pred)) ** 2
|
||||
return np.mean(squared_logarithmic_errors)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
@ -1,59 +0,0 @@
|
||||
"""
|
||||
Binary Cross-Entropy (BCE) Loss Function
|
||||
|
||||
Description:
|
||||
Quantifies dissimilarity between true labels (0 or 1) and predicted probabilities.
|
||||
It's widely used in binary classification tasks.
|
||||
|
||||
Formula:
|
||||
BCE = -Σ(y_true * log(y_pred) + (1 - y_true) * log(1 - y_pred))
|
||||
|
||||
Source:
|
||||
[Wikipedia - Cross entropy](https://en.wikipedia.org/wiki/Cross_entropy)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def binary_cross_entropy(
|
||||
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
||||
) -> float:
|
||||
"""
|
||||
Calculate the BCE Loss between true labels and predicted probabilities.
|
||||
|
||||
Parameters:
|
||||
- y_true: True binary labels (0 or 1).
|
||||
- y_pred: Predicted probabilities for class 1.
|
||||
- epsilon: Small constant to avoid numerical instability.
|
||||
|
||||
Returns:
|
||||
- bce_loss: Binary Cross-Entropy Loss.
|
||||
|
||||
Example Usage:
|
||||
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
||||
>>> predicted_probs = np.array([0.2, 0.7, 0.9, 0.3, 0.8])
|
||||
>>> binary_cross_entropy(true_labels, predicted_probs)
|
||||
0.2529995012327421
|
||||
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
||||
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||
>>> binary_cross_entropy(true_labels, predicted_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
# Clip predicted probabilities to avoid log(0) and log(1)
|
||||
y_pred = np.clip(y_pred, epsilon, 1 - epsilon)
|
||||
|
||||
# Calculate binary cross-entropy loss
|
||||
bce_loss = -(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
|
||||
|
||||
# Take the mean over all samples
|
||||
return np.mean(bce_loss)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
@ -1,85 +0,0 @@
|
||||
"""
|
||||
Categorical Cross-Entropy Loss
|
||||
|
||||
This function calculates the Categorical Cross-Entropy Loss between true class
|
||||
labels and predicted class probabilities.
|
||||
|
||||
Formula:
|
||||
Categorical Cross-Entropy Loss = -Σ(y_true * ln(y_pred))
|
||||
|
||||
Resources:
|
||||
- [Wikipedia - Cross entropy](https://en.wikipedia.org/wiki/Cross_entropy)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def categorical_cross_entropy(
|
||||
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
||||
) -> float:
|
||||
"""
|
||||
Calculate Categorical Cross-Entropy Loss between true class labels and
|
||||
predicted class probabilities.
|
||||
|
||||
Parameters:
|
||||
- y_true: True class labels (one-hot encoded) as a NumPy array.
|
||||
- y_pred: Predicted class probabilities as a NumPy array.
|
||||
- epsilon: Small constant to avoid numerical instability.
|
||||
|
||||
Returns:
|
||||
- ce_loss: Categorical Cross-Entropy Loss as a floating-point number.
|
||||
|
||||
Example:
|
||||
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
||||
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]])
|
||||
>>> categorical_cross_entropy(true_labels, pred_probs)
|
||||
0.567395975254385
|
||||
|
||||
>>> y_true = np.array([[1, 0], [0, 1]])
|
||||
>>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
||||
>>> categorical_cross_entropy(y_true, y_pred)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same shape.
|
||||
|
||||
>>> y_true = np.array([[2, 0, 1], [1, 0, 0]])
|
||||
>>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
||||
>>> categorical_cross_entropy(y_true, y_pred)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: y_true must be one-hot encoded.
|
||||
|
||||
>>> y_true = np.array([[1, 0, 1], [1, 0, 0]])
|
||||
>>> y_pred = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
||||
>>> categorical_cross_entropy(y_true, y_pred)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: y_true must be one-hot encoded.
|
||||
|
||||
>>> y_true = np.array([[1, 0, 0], [0, 1, 0]])
|
||||
>>> y_pred = np.array([[0.9, 0.1, 0.1], [0.2, 0.7, 0.1]])
|
||||
>>> categorical_cross_entropy(y_true, y_pred)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Predicted probabilities must sum to approximately 1.
|
||||
"""
|
||||
if y_true.shape != y_pred.shape:
|
||||
raise ValueError("Input arrays must have the same shape.")
|
||||
|
||||
if np.any((y_true != 0) & (y_true != 1)) or np.any(y_true.sum(axis=1) != 1):
|
||||
raise ValueError("y_true must be one-hot encoded.")
|
||||
|
||||
if not np.all(np.isclose(np.sum(y_pred, axis=1), 1, rtol=epsilon, atol=epsilon)):
|
||||
raise ValueError("Predicted probabilities must sum to approximately 1.")
|
||||
|
||||
# Clip predicted probabilities to avoid log(0)
|
||||
y_pred = np.clip(y_pred, epsilon, 1)
|
||||
|
||||
# Calculate categorical cross-entropy loss
|
||||
return -np.sum(y_true * np.log(y_pred))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
@ -1,64 +0,0 @@
|
||||
"""
|
||||
Hinge Loss
|
||||
|
||||
Description:
|
||||
Compute the Hinge loss used for training SVM (Support Vector Machine).
|
||||
|
||||
Formula:
|
||||
loss = max(0, 1 - true * pred)
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Hinge_loss
|
||||
|
||||
Author: Poojan Smart
|
||||
Email: smrtpoojan@gmail.com
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def hinge_loss(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Calculate the mean hinge loss for y_true and y_pred for binary classification.
|
||||
|
||||
Args:
|
||||
y_true: Array of actual values (ground truth) encoded as -1 and 1.
|
||||
y_pred: Array of predicted values.
|
||||
|
||||
Returns:
|
||||
The hinge loss between y_true and y_pred.
|
||||
|
||||
Examples:
|
||||
>>> y_true = np.array([-1, 1, 1, -1, 1])
|
||||
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
|
||||
>>> hinge_loss(y_true, pred)
|
||||
1.52
|
||||
>>> y_true = np.array([-1, 1, 1, -1, 1, 1])
|
||||
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
|
||||
>>> hinge_loss(y_true, pred)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Length of predicted and actual array must be same.
|
||||
>>> y_true = np.array([-1, 1, 10, -1, 1])
|
||||
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
|
||||
>>> hinge_loss(y_true, pred)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: y_true can have values -1 or 1 only.
|
||||
"""
|
||||
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Length of predicted and actual array must be same.")
|
||||
|
||||
# Raise value error when y_true (encoded labels) have any other values
|
||||
# than -1 and 1
|
||||
if np.any((y_true != -1) & (y_true != 1)):
|
||||
raise ValueError("y_true can have values -1 or 1 only.")
|
||||
|
||||
hinge_losses = np.maximum(0, 1.0 - (y_true * y_pred))
|
||||
return np.mean(hinge_losses)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
@ -1,52 +0,0 @@
|
||||
"""
|
||||
Huber Loss Function
|
||||
|
||||
Description:
|
||||
Huber loss function describes the penalty incurred by an estimation procedure.
|
||||
It serves as a measure of the model's accuracy in regression tasks.
|
||||
|
||||
Formula:
|
||||
Huber Loss = if |y_true - y_pred| <= delta then 0.5 * (y_true - y_pred)^2
|
||||
else delta * |y_true - y_pred| - 0.5 * delta^2
|
||||
|
||||
Source:
|
||||
[Wikipedia - Huber Loss](https://en.wikipedia.org/wiki/Huber_loss)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def huber_loss(y_true: np.ndarray, y_pred: np.ndarray, delta: float) -> float:
|
||||
"""
|
||||
Calculate the mean of Huber Loss.
|
||||
|
||||
Parameters:
|
||||
- y_true: The true values (ground truth).
|
||||
- y_pred: The predicted values.
|
||||
|
||||
Returns:
|
||||
- huber_loss: The mean of Huber Loss between y_true and y_pred.
|
||||
|
||||
Example usage:
|
||||
>>> true_values = np.array([0.9, 10.0, 2.0, 1.0, 5.2])
|
||||
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||
>>> np.isclose(huber_loss(true_values, predicted_values, 1.0), 2.102)
|
||||
True
|
||||
>>> true_labels = np.array([11.0, 21.0, 3.32, 4.0, 5.0])
|
||||
>>> predicted_probs = np.array([8.3, 20.8, 2.9, 11.2, 5.0])
|
||||
>>> np.isclose(huber_loss(true_labels, predicted_probs, 1.0), 1.80164)
|
||||
True
|
||||
"""
|
||||
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
huber_mse = 0.5 * (y_true - y_pred) ** 2
|
||||
huber_mae = delta * (np.abs(y_true - y_pred) - 0.5 * delta)
|
||||
return np.where(np.abs(y_true - y_pred) <= delta, huber_mse, huber_mae).mean()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
@ -1,51 +0,0 @@
|
||||
"""
|
||||
Mean Squared Error (MSE) Loss Function
|
||||
|
||||
Description:
|
||||
MSE measures the mean squared difference between true values and predicted values.
|
||||
It serves as a measure of the model's accuracy in regression tasks.
|
||||
|
||||
Formula:
|
||||
MSE = (1/n) * Σ(y_true - y_pred)^2
|
||||
|
||||
Source:
|
||||
[Wikipedia - Mean squared error](https://en.wikipedia.org/wiki/Mean_squared_error)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def mean_squared_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Calculate the Mean Squared Error (MSE) between two arrays.
|
||||
|
||||
Parameters:
|
||||
- y_true: The true values (ground truth).
|
||||
- y_pred: The predicted values.
|
||||
|
||||
Returns:
|
||||
- mse: The Mean Squared Error between y_true and y_pred.
|
||||
|
||||
Example usage:
|
||||
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||
>>> mean_squared_error(true_values, predicted_values)
|
||||
0.028000000000000032
|
||||
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||
>>> mean_squared_error(true_labels, predicted_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
squared_errors = (y_true - y_pred) ** 2
|
||||
return np.mean(squared_errors)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
@ -1,55 +0,0 @@
|
||||
"""
|
||||
Mean Squared Logarithmic Error (MSLE) Loss Function
|
||||
|
||||
Description:
|
||||
MSLE measures the mean squared logarithmic difference between
|
||||
true values and predicted values, particularly useful when
|
||||
dealing with regression problems involving skewed or large-value
|
||||
targets. It is often used when the relative differences between
|
||||
predicted and true values are more important than absolute
|
||||
differences.
|
||||
|
||||
Formula:
|
||||
MSLE = (1/n) * Σ(log(1 + y_true) - log(1 + y_pred))^2
|
||||
|
||||
Source:
|
||||
(https://insideaiml.com/blog/MeanSquared-Logarithmic-Error-Loss-1035)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def mean_squared_logarithmic_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Calculate the Mean Squared Logarithmic Error (MSLE) between two arrays.
|
||||
|
||||
Parameters:
|
||||
- y_true: The true values (ground truth).
|
||||
- y_pred: The predicted values.
|
||||
|
||||
Returns:
|
||||
- msle: The Mean Squared Logarithmic Error between y_true and y_pred.
|
||||
|
||||
Example usage:
|
||||
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
||||
>>> mean_squared_logarithmic_error(true_values, predicted_values)
|
||||
0.0030860877925181344
|
||||
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
||||
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
||||
>>> mean_squared_logarithmic_error(true_labels, predicted_probs)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Input arrays must have the same length.
|
||||
"""
|
||||
if len(y_true) != len(y_pred):
|
||||
raise ValueError("Input arrays must have the same length.")
|
||||
|
||||
squared_logarithmic_errors = (np.log1p(y_true) - np.log1p(y_pred)) ** 2
|
||||
return np.mean(squared_logarithmic_errors)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
x
Reference in New Issue
Block a user