mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Reenable files when TensorFlow supports the current Python (#8602)
* Remove python_version < "3.11" for tensorflow * Reenable neural_network/input_data.py_tf * updating DIRECTORY.md * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Try to fix ruff * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Try to fix ruff * Try to fix ruff * Try to fix ruff * Try to fix pre-commit * Try to fix * Fix * Fix * Reenable dynamic_programming/k_means_clustering_tensorflow.py_tf * updating DIRECTORY.md * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Try to fix ruff --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
84b6852de8
commit
56a40eb3ee
|
@ -309,6 +309,7 @@
|
|||
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
|
||||
* [Integer Partition](dynamic_programming/integer_partition.py)
|
||||
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
|
||||
* [K Means Clustering Tensorflow](dynamic_programming/k_means_clustering_tensorflow.py)
|
||||
* [Knapsack](dynamic_programming/knapsack.py)
|
||||
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
|
||||
* [Longest Common Substring](dynamic_programming/longest_common_substring.py)
|
||||
|
@ -685,6 +686,7 @@
|
|||
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
|
||||
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
|
||||
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
|
||||
* [Input Data](neural_network/input_data.py)
|
||||
* [Perceptron](neural_network/perceptron.py)
|
||||
* [Simple Neural Network](neural_network/simple_neural_network.py)
|
||||
|
||||
|
|
|
@ -1,9 +1,10 @@
|
|||
import tensorflow as tf
|
||||
from random import shuffle
|
||||
|
||||
import tensorflow as tf
|
||||
from numpy import array
|
||||
|
||||
|
||||
def TFKMeansCluster(vectors, noofclusters):
|
||||
def tf_k_means_cluster(vectors, noofclusters):
|
||||
"""
|
||||
K-Means Clustering using TensorFlow.
|
||||
'vectors' should be a n*k 2-D NumPy array, where n is the number
|
||||
|
@ -30,7 +31,6 @@ def TFKMeansCluster(vectors, noofclusters):
|
|||
graph = tf.Graph()
|
||||
|
||||
with graph.as_default():
|
||||
|
||||
# SESSION OF COMPUTATION
|
||||
|
||||
sess = tf.Session()
|
||||
|
@ -95,8 +95,7 @@ def TFKMeansCluster(vectors, noofclusters):
|
|||
# iterations. To keep things simple, we will only do a set number of
|
||||
# iterations, instead of using a Stopping Criterion.
|
||||
noofiterations = 100
|
||||
for iteration_n in range(noofiterations):
|
||||
|
||||
for _ in range(noofiterations):
|
||||
##EXPECTATION STEP
|
||||
##Based on the centroid locations till last iteration, compute
|
||||
##the _expected_ centroid assignments.
|
|
@ -21,13 +21,10 @@ This module and all its submodules are deprecated.
|
|||
import collections
|
||||
import gzip
|
||||
import os
|
||||
import urllib
|
||||
|
||||
import numpy
|
||||
from six.moves import urllib
|
||||
from six.moves import xrange # pylint: disable=redefined-builtin
|
||||
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import random_seed
|
||||
from tensorflow.python.framework import dtypes, random_seed
|
||||
from tensorflow.python.platform import gfile
|
||||
from tensorflow.python.util.deprecation import deprecated
|
||||
|
||||
|
@ -46,16 +43,16 @@ def _read32(bytestream):
|
|||
def _extract_images(f):
|
||||
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].
|
||||
|
||||
Args:
|
||||
f: A file object that can be passed into a gzip reader.
|
||||
Args:
|
||||
f: A file object that can be passed into a gzip reader.
|
||||
|
||||
Returns:
|
||||
data: A 4D uint8 numpy array [index, y, x, depth].
|
||||
Returns:
|
||||
data: A 4D uint8 numpy array [index, y, x, depth].
|
||||
|
||||
Raises:
|
||||
ValueError: If the bytestream does not start with 2051.
|
||||
Raises:
|
||||
ValueError: If the bytestream does not start with 2051.
|
||||
|
||||
"""
|
||||
"""
|
||||
print("Extracting", f.name)
|
||||
with gzip.GzipFile(fileobj=f) as bytestream:
|
||||
magic = _read32(bytestream)
|
||||
|
@ -86,17 +83,17 @@ def _dense_to_one_hot(labels_dense, num_classes):
|
|||
def _extract_labels(f, one_hot=False, num_classes=10):
|
||||
"""Extract the labels into a 1D uint8 numpy array [index].
|
||||
|
||||
Args:
|
||||
f: A file object that can be passed into a gzip reader.
|
||||
one_hot: Does one hot encoding for the result.
|
||||
num_classes: Number of classes for the one hot encoding.
|
||||
Args:
|
||||
f: A file object that can be passed into a gzip reader.
|
||||
one_hot: Does one hot encoding for the result.
|
||||
num_classes: Number of classes for the one hot encoding.
|
||||
|
||||
Returns:
|
||||
labels: a 1D uint8 numpy array.
|
||||
Returns:
|
||||
labels: a 1D uint8 numpy array.
|
||||
|
||||
Raises:
|
||||
ValueError: If the bystream doesn't start with 2049.
|
||||
"""
|
||||
Raises:
|
||||
ValueError: If the bystream doesn't start with 2049.
|
||||
"""
|
||||
print("Extracting", f.name)
|
||||
with gzip.GzipFile(fileobj=f) as bytestream:
|
||||
magic = _read32(bytestream)
|
||||
|
@ -115,8 +112,8 @@ def _extract_labels(f, one_hot=False, num_classes=10):
|
|||
class _DataSet:
|
||||
"""Container class for a _DataSet (deprecated).
|
||||
|
||||
THIS CLASS IS DEPRECATED.
|
||||
"""
|
||||
THIS CLASS IS DEPRECATED.
|
||||
"""
|
||||
|
||||
@deprecated(
|
||||
None,
|
||||
|
@ -135,21 +132,21 @@ class _DataSet:
|
|||
):
|
||||
"""Construct a _DataSet.
|
||||
|
||||
one_hot arg is used only if fake_data is true. `dtype` can be either
|
||||
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
|
||||
`[0, 1]`. Seed arg provides for convenient deterministic testing.
|
||||
one_hot arg is used only if fake_data is true. `dtype` can be either
|
||||
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
|
||||
`[0, 1]`. Seed arg provides for convenient deterministic testing.
|
||||
|
||||
Args:
|
||||
images: The images
|
||||
labels: The labels
|
||||
fake_data: Ignore inages and labels, use fake data.
|
||||
one_hot: Bool, return the labels as one hot vectors (if True) or ints (if
|
||||
False).
|
||||
dtype: Output image dtype. One of [uint8, float32]. `uint8` output has
|
||||
range [0,255]. float32 output has range [0,1].
|
||||
reshape: Bool. If True returned images are returned flattened to vectors.
|
||||
seed: The random seed to use.
|
||||
"""
|
||||
Args:
|
||||
images: The images
|
||||
labels: The labels
|
||||
fake_data: Ignore inages and labels, use fake data.
|
||||
one_hot: Bool, return the labels as one hot vectors (if True) or ints (if
|
||||
False).
|
||||
dtype: Output image dtype. One of [uint8, float32]. `uint8` output has
|
||||
range [0,255]. float32 output has range [0,1].
|
||||
reshape: Bool. If True returned images are returned flattened to vectors.
|
||||
seed: The random seed to use.
|
||||
"""
|
||||
seed1, seed2 = random_seed.get_seed(seed)
|
||||
# If op level seed is not set, use whatever graph level seed is returned
|
||||
numpy.random.seed(seed1 if seed is None else seed2)
|
||||
|
@ -206,8 +203,8 @@ class _DataSet:
|
|||
else:
|
||||
fake_label = 0
|
||||
return (
|
||||
[fake_image for _ in xrange(batch_size)],
|
||||
[fake_label for _ in xrange(batch_size)],
|
||||
[fake_image for _ in range(batch_size)],
|
||||
[fake_label for _ in range(batch_size)],
|
||||
)
|
||||
start = self._index_in_epoch
|
||||
# Shuffle for the first epoch
|
||||
|
@ -250,19 +247,19 @@ class _DataSet:
|
|||
def _maybe_download(filename, work_directory, source_url):
|
||||
"""Download the data from source url, unless it's already here.
|
||||
|
||||
Args:
|
||||
filename: string, name of the file in the directory.
|
||||
work_directory: string, path to working directory.
|
||||
source_url: url to download from if file doesn't exist.
|
||||
Args:
|
||||
filename: string, name of the file in the directory.
|
||||
work_directory: string, path to working directory.
|
||||
source_url: url to download from if file doesn't exist.
|
||||
|
||||
Returns:
|
||||
Path to resulting file.
|
||||
"""
|
||||
Returns:
|
||||
Path to resulting file.
|
||||
"""
|
||||
if not gfile.Exists(work_directory):
|
||||
gfile.MakeDirs(work_directory)
|
||||
filepath = os.path.join(work_directory, filename)
|
||||
if not gfile.Exists(filepath):
|
||||
urllib.request.urlretrieve(source_url, filepath)
|
||||
urllib.request.urlretrieve(source_url, filepath) # noqa: S310
|
||||
with gfile.GFile(filepath) as f:
|
||||
size = f.size()
|
||||
print("Successfully downloaded", filename, size, "bytes.")
|
||||
|
@ -328,7 +325,8 @@ def read_data_sets(
|
|||
|
||||
if not 0 <= validation_size <= len(train_images):
|
||||
raise ValueError(
|
||||
f"Validation size should be between 0 and {len(train_images)}. Received: {validation_size}."
|
||||
f"Validation size should be between 0 and {len(train_images)}. "
|
||||
f"Received: {validation_size}."
|
||||
)
|
||||
|
||||
validation_images = train_images[:validation_size]
|
||||
|
@ -336,7 +334,7 @@ def read_data_sets(
|
|||
train_images = train_images[validation_size:]
|
||||
train_labels = train_labels[validation_size:]
|
||||
|
||||
options = dict(dtype=dtype, reshape=reshape, seed=seed)
|
||||
options = {"dtype": dtype, "reshape": reshape, "seed": seed}
|
||||
|
||||
train = _DataSet(train_images, train_labels, **options)
|
||||
validation = _DataSet(validation_images, validation_labels, **options)
|
|
@ -15,7 +15,7 @@ scikit-fuzzy
|
|||
scikit-learn
|
||||
statsmodels
|
||||
sympy
|
||||
tensorflow; python_version < "3.11"
|
||||
tensorflow
|
||||
texttable
|
||||
tweepy
|
||||
xgboost
|
||||
|
|
Loading…
Reference in New Issue
Block a user