mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-20 00:02:04 +00:00
Reenable files when TensorFlow supports the current Python (#8602)
* Remove python_version < "3.11" for tensorflow * Reenable neural_network/input_data.py_tf * updating DIRECTORY.md * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Try to fix ruff * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Try to fix ruff * Try to fix ruff * Try to fix ruff * Try to fix pre-commit * Try to fix * Fix * Fix * Reenable dynamic_programming/k_means_clustering_tensorflow.py_tf * updating DIRECTORY.md * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Try to fix ruff --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
84b6852de8
commit
56a40eb3ee
|
@ -309,6 +309,7 @@
|
||||||
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
|
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
|
||||||
* [Integer Partition](dynamic_programming/integer_partition.py)
|
* [Integer Partition](dynamic_programming/integer_partition.py)
|
||||||
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
|
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
|
||||||
|
* [K Means Clustering Tensorflow](dynamic_programming/k_means_clustering_tensorflow.py)
|
||||||
* [Knapsack](dynamic_programming/knapsack.py)
|
* [Knapsack](dynamic_programming/knapsack.py)
|
||||||
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
|
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
|
||||||
* [Longest Common Substring](dynamic_programming/longest_common_substring.py)
|
* [Longest Common Substring](dynamic_programming/longest_common_substring.py)
|
||||||
|
@ -685,6 +686,7 @@
|
||||||
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
|
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
|
||||||
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
|
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
|
||||||
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
|
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
|
||||||
|
* [Input Data](neural_network/input_data.py)
|
||||||
* [Perceptron](neural_network/perceptron.py)
|
* [Perceptron](neural_network/perceptron.py)
|
||||||
* [Simple Neural Network](neural_network/simple_neural_network.py)
|
* [Simple Neural Network](neural_network/simple_neural_network.py)
|
||||||
|
|
||||||
|
|
|
@ -1,9 +1,10 @@
|
||||||
import tensorflow as tf
|
|
||||||
from random import shuffle
|
from random import shuffle
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
from numpy import array
|
from numpy import array
|
||||||
|
|
||||||
|
|
||||||
def TFKMeansCluster(vectors, noofclusters):
|
def tf_k_means_cluster(vectors, noofclusters):
|
||||||
"""
|
"""
|
||||||
K-Means Clustering using TensorFlow.
|
K-Means Clustering using TensorFlow.
|
||||||
'vectors' should be a n*k 2-D NumPy array, where n is the number
|
'vectors' should be a n*k 2-D NumPy array, where n is the number
|
||||||
|
@ -30,7 +31,6 @@ def TFKMeansCluster(vectors, noofclusters):
|
||||||
graph = tf.Graph()
|
graph = tf.Graph()
|
||||||
|
|
||||||
with graph.as_default():
|
with graph.as_default():
|
||||||
|
|
||||||
# SESSION OF COMPUTATION
|
# SESSION OF COMPUTATION
|
||||||
|
|
||||||
sess = tf.Session()
|
sess = tf.Session()
|
||||||
|
@ -95,8 +95,7 @@ def TFKMeansCluster(vectors, noofclusters):
|
||||||
# iterations. To keep things simple, we will only do a set number of
|
# iterations. To keep things simple, we will only do a set number of
|
||||||
# iterations, instead of using a Stopping Criterion.
|
# iterations, instead of using a Stopping Criterion.
|
||||||
noofiterations = 100
|
noofiterations = 100
|
||||||
for iteration_n in range(noofiterations):
|
for _ in range(noofiterations):
|
||||||
|
|
||||||
##EXPECTATION STEP
|
##EXPECTATION STEP
|
||||||
##Based on the centroid locations till last iteration, compute
|
##Based on the centroid locations till last iteration, compute
|
||||||
##the _expected_ centroid assignments.
|
##the _expected_ centroid assignments.
|
|
@ -21,13 +21,10 @@ This module and all its submodules are deprecated.
|
||||||
import collections
|
import collections
|
||||||
import gzip
|
import gzip
|
||||||
import os
|
import os
|
||||||
|
import urllib
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
from six.moves import urllib
|
from tensorflow.python.framework import dtypes, random_seed
|
||||||
from six.moves import xrange # pylint: disable=redefined-builtin
|
|
||||||
|
|
||||||
from tensorflow.python.framework import dtypes
|
|
||||||
from tensorflow.python.framework import random_seed
|
|
||||||
from tensorflow.python.platform import gfile
|
from tensorflow.python.platform import gfile
|
||||||
from tensorflow.python.util.deprecation import deprecated
|
from tensorflow.python.util.deprecation import deprecated
|
||||||
|
|
||||||
|
@ -206,8 +203,8 @@ class _DataSet:
|
||||||
else:
|
else:
|
||||||
fake_label = 0
|
fake_label = 0
|
||||||
return (
|
return (
|
||||||
[fake_image for _ in xrange(batch_size)],
|
[fake_image for _ in range(batch_size)],
|
||||||
[fake_label for _ in xrange(batch_size)],
|
[fake_label for _ in range(batch_size)],
|
||||||
)
|
)
|
||||||
start = self._index_in_epoch
|
start = self._index_in_epoch
|
||||||
# Shuffle for the first epoch
|
# Shuffle for the first epoch
|
||||||
|
@ -262,7 +259,7 @@ def _maybe_download(filename, work_directory, source_url):
|
||||||
gfile.MakeDirs(work_directory)
|
gfile.MakeDirs(work_directory)
|
||||||
filepath = os.path.join(work_directory, filename)
|
filepath = os.path.join(work_directory, filename)
|
||||||
if not gfile.Exists(filepath):
|
if not gfile.Exists(filepath):
|
||||||
urllib.request.urlretrieve(source_url, filepath)
|
urllib.request.urlretrieve(source_url, filepath) # noqa: S310
|
||||||
with gfile.GFile(filepath) as f:
|
with gfile.GFile(filepath) as f:
|
||||||
size = f.size()
|
size = f.size()
|
||||||
print("Successfully downloaded", filename, size, "bytes.")
|
print("Successfully downloaded", filename, size, "bytes.")
|
||||||
|
@ -328,7 +325,8 @@ def read_data_sets(
|
||||||
|
|
||||||
if not 0 <= validation_size <= len(train_images):
|
if not 0 <= validation_size <= len(train_images):
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
f"Validation size should be between 0 and {len(train_images)}. Received: {validation_size}."
|
f"Validation size should be between 0 and {len(train_images)}. "
|
||||||
|
f"Received: {validation_size}."
|
||||||
)
|
)
|
||||||
|
|
||||||
validation_images = train_images[:validation_size]
|
validation_images = train_images[:validation_size]
|
||||||
|
@ -336,7 +334,7 @@ def read_data_sets(
|
||||||
train_images = train_images[validation_size:]
|
train_images = train_images[validation_size:]
|
||||||
train_labels = train_labels[validation_size:]
|
train_labels = train_labels[validation_size:]
|
||||||
|
|
||||||
options = dict(dtype=dtype, reshape=reshape, seed=seed)
|
options = {"dtype": dtype, "reshape": reshape, "seed": seed}
|
||||||
|
|
||||||
train = _DataSet(train_images, train_labels, **options)
|
train = _DataSet(train_images, train_labels, **options)
|
||||||
validation = _DataSet(validation_images, validation_labels, **options)
|
validation = _DataSet(validation_images, validation_labels, **options)
|
|
@ -15,7 +15,7 @@ scikit-fuzzy
|
||||||
scikit-learn
|
scikit-learn
|
||||||
statsmodels
|
statsmodels
|
||||||
sympy
|
sympy
|
||||||
tensorflow; python_version < "3.11"
|
tensorflow
|
||||||
texttable
|
texttable
|
||||||
tweepy
|
tweepy
|
||||||
xgboost
|
xgboost
|
||||||
|
|
Loading…
Reference in New Issue
Block a user