Reenable files when TensorFlow supports the current Python (#8602)

* Remove python_version < "3.11" for tensorflow

* Reenable neural_network/input_data.py_tf

* updating DIRECTORY.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Try to fix ruff

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Try to fix ruff

* Try to fix ruff

* Try to fix ruff

* Try to fix pre-commit

* Try to fix

* Fix

* Fix

* Reenable dynamic_programming/k_means_clustering_tensorflow.py_tf

* updating DIRECTORY.md

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Try to fix ruff

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Maxim Smolskiy 2023-04-01 20:43:11 +03:00 committed by GitHub
parent 84b6852de8
commit 56a40eb3ee
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 54 additions and 55 deletions

View File

@ -309,6 +309,7 @@
* [Floyd Warshall](dynamic_programming/floyd_warshall.py) * [Floyd Warshall](dynamic_programming/floyd_warshall.py)
* [Integer Partition](dynamic_programming/integer_partition.py) * [Integer Partition](dynamic_programming/integer_partition.py)
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py) * [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
* [K Means Clustering Tensorflow](dynamic_programming/k_means_clustering_tensorflow.py)
* [Knapsack](dynamic_programming/knapsack.py) * [Knapsack](dynamic_programming/knapsack.py)
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py) * [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
* [Longest Common Substring](dynamic_programming/longest_common_substring.py) * [Longest Common Substring](dynamic_programming/longest_common_substring.py)
@ -685,6 +686,7 @@
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py) * [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py) * [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](neural_network/convolution_neural_network.py) * [Convolution Neural Network](neural_network/convolution_neural_network.py)
* [Input Data](neural_network/input_data.py)
* [Perceptron](neural_network/perceptron.py) * [Perceptron](neural_network/perceptron.py)
* [Simple Neural Network](neural_network/simple_neural_network.py) * [Simple Neural Network](neural_network/simple_neural_network.py)

View File

@ -1,9 +1,10 @@
import tensorflow as tf
from random import shuffle from random import shuffle
import tensorflow as tf
from numpy import array from numpy import array
def TFKMeansCluster(vectors, noofclusters): def tf_k_means_cluster(vectors, noofclusters):
""" """
K-Means Clustering using TensorFlow. K-Means Clustering using TensorFlow.
'vectors' should be a n*k 2-D NumPy array, where n is the number 'vectors' should be a n*k 2-D NumPy array, where n is the number
@ -30,7 +31,6 @@ def TFKMeansCluster(vectors, noofclusters):
graph = tf.Graph() graph = tf.Graph()
with graph.as_default(): with graph.as_default():
# SESSION OF COMPUTATION # SESSION OF COMPUTATION
sess = tf.Session() sess = tf.Session()
@ -95,8 +95,7 @@ def TFKMeansCluster(vectors, noofclusters):
# iterations. To keep things simple, we will only do a set number of # iterations. To keep things simple, we will only do a set number of
# iterations, instead of using a Stopping Criterion. # iterations, instead of using a Stopping Criterion.
noofiterations = 100 noofiterations = 100
for iteration_n in range(noofiterations): for _ in range(noofiterations):
##EXPECTATION STEP ##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute ##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments. ##the _expected_ centroid assignments.

View File

@ -21,13 +21,10 @@ This module and all its submodules are deprecated.
import collections import collections
import gzip import gzip
import os import os
import urllib
import numpy import numpy
from six.moves import urllib from tensorflow.python.framework import dtypes, random_seed
from six.moves import xrange # pylint: disable=redefined-builtin
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import random_seed
from tensorflow.python.platform import gfile from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated from tensorflow.python.util.deprecation import deprecated
@ -46,16 +43,16 @@ def _read32(bytestream):
def _extract_images(f): def _extract_images(f):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]. """Extract the images into a 4D uint8 numpy array [index, y, x, depth].
Args: Args:
f: A file object that can be passed into a gzip reader. f: A file object that can be passed into a gzip reader.
Returns: Returns:
data: A 4D uint8 numpy array [index, y, x, depth]. data: A 4D uint8 numpy array [index, y, x, depth].
Raises: Raises:
ValueError: If the bytestream does not start with 2051. ValueError: If the bytestream does not start with 2051.
""" """
print("Extracting", f.name) print("Extracting", f.name)
with gzip.GzipFile(fileobj=f) as bytestream: with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream) magic = _read32(bytestream)
@ -86,17 +83,17 @@ def _dense_to_one_hot(labels_dense, num_classes):
def _extract_labels(f, one_hot=False, num_classes=10): def _extract_labels(f, one_hot=False, num_classes=10):
"""Extract the labels into a 1D uint8 numpy array [index]. """Extract the labels into a 1D uint8 numpy array [index].
Args: Args:
f: A file object that can be passed into a gzip reader. f: A file object that can be passed into a gzip reader.
one_hot: Does one hot encoding for the result. one_hot: Does one hot encoding for the result.
num_classes: Number of classes for the one hot encoding. num_classes: Number of classes for the one hot encoding.
Returns: Returns:
labels: a 1D uint8 numpy array. labels: a 1D uint8 numpy array.
Raises: Raises:
ValueError: If the bystream doesn't start with 2049. ValueError: If the bystream doesn't start with 2049.
""" """
print("Extracting", f.name) print("Extracting", f.name)
with gzip.GzipFile(fileobj=f) as bytestream: with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream) magic = _read32(bytestream)
@ -115,8 +112,8 @@ def _extract_labels(f, one_hot=False, num_classes=10):
class _DataSet: class _DataSet:
"""Container class for a _DataSet (deprecated). """Container class for a _DataSet (deprecated).
THIS CLASS IS DEPRECATED. THIS CLASS IS DEPRECATED.
""" """
@deprecated( @deprecated(
None, None,
@ -135,21 +132,21 @@ class _DataSet:
): ):
"""Construct a _DataSet. """Construct a _DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`. Seed arg provides for convenient deterministic testing. `[0, 1]`. Seed arg provides for convenient deterministic testing.
Args: Args:
images: The images images: The images
labels: The labels labels: The labels
fake_data: Ignore inages and labels, use fake data. fake_data: Ignore inages and labels, use fake data.
one_hot: Bool, return the labels as one hot vectors (if True) or ints (if one_hot: Bool, return the labels as one hot vectors (if True) or ints (if
False). False).
dtype: Output image dtype. One of [uint8, float32]. `uint8` output has dtype: Output image dtype. One of [uint8, float32]. `uint8` output has
range [0,255]. float32 output has range [0,1]. range [0,255]. float32 output has range [0,1].
reshape: Bool. If True returned images are returned flattened to vectors. reshape: Bool. If True returned images are returned flattened to vectors.
seed: The random seed to use. seed: The random seed to use.
""" """
seed1, seed2 = random_seed.get_seed(seed) seed1, seed2 = random_seed.get_seed(seed)
# If op level seed is not set, use whatever graph level seed is returned # If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seed1 if seed is None else seed2) numpy.random.seed(seed1 if seed is None else seed2)
@ -206,8 +203,8 @@ class _DataSet:
else: else:
fake_label = 0 fake_label = 0
return ( return (
[fake_image for _ in xrange(batch_size)], [fake_image for _ in range(batch_size)],
[fake_label for _ in xrange(batch_size)], [fake_label for _ in range(batch_size)],
) )
start = self._index_in_epoch start = self._index_in_epoch
# Shuffle for the first epoch # Shuffle for the first epoch
@ -250,19 +247,19 @@ class _DataSet:
def _maybe_download(filename, work_directory, source_url): def _maybe_download(filename, work_directory, source_url):
"""Download the data from source url, unless it's already here. """Download the data from source url, unless it's already here.
Args: Args:
filename: string, name of the file in the directory. filename: string, name of the file in the directory.
work_directory: string, path to working directory. work_directory: string, path to working directory.
source_url: url to download from if file doesn't exist. source_url: url to download from if file doesn't exist.
Returns: Returns:
Path to resulting file. Path to resulting file.
""" """
if not gfile.Exists(work_directory): if not gfile.Exists(work_directory):
gfile.MakeDirs(work_directory) gfile.MakeDirs(work_directory)
filepath = os.path.join(work_directory, filename) filepath = os.path.join(work_directory, filename)
if not gfile.Exists(filepath): if not gfile.Exists(filepath):
urllib.request.urlretrieve(source_url, filepath) urllib.request.urlretrieve(source_url, filepath) # noqa: S310
with gfile.GFile(filepath) as f: with gfile.GFile(filepath) as f:
size = f.size() size = f.size()
print("Successfully downloaded", filename, size, "bytes.") print("Successfully downloaded", filename, size, "bytes.")
@ -328,7 +325,8 @@ def read_data_sets(
if not 0 <= validation_size <= len(train_images): if not 0 <= validation_size <= len(train_images):
raise ValueError( raise ValueError(
f"Validation size should be between 0 and {len(train_images)}. Received: {validation_size}." f"Validation size should be between 0 and {len(train_images)}. "
f"Received: {validation_size}."
) )
validation_images = train_images[:validation_size] validation_images = train_images[:validation_size]
@ -336,7 +334,7 @@ def read_data_sets(
train_images = train_images[validation_size:] train_images = train_images[validation_size:]
train_labels = train_labels[validation_size:] train_labels = train_labels[validation_size:]
options = dict(dtype=dtype, reshape=reshape, seed=seed) options = {"dtype": dtype, "reshape": reshape, "seed": seed}
train = _DataSet(train_images, train_labels, **options) train = _DataSet(train_images, train_labels, **options)
validation = _DataSet(validation_images, validation_labels, **options) validation = _DataSet(validation_images, validation_labels, **options)

View File

@ -15,7 +15,7 @@ scikit-fuzzy
scikit-learn scikit-learn
statsmodels statsmodels
sympy sympy
tensorflow; python_version < "3.11" tensorflow
texttable texttable
tweepy tweepy
xgboost xgboost