mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 23:11:09 +00:00
Solution to Problem 21
This commit is contained in:
parent
888c51b9d2
commit
570c27cfdd
42
Project Euler/Problem 21/sol1.py
Normal file
42
Project Euler/Problem 21/sol1.py
Normal file
|
@ -0,0 +1,42 @@
|
|||
#-.- coding: latin-1 -.-
|
||||
from __future__ import print_function
|
||||
from math import sqrt
|
||||
'''
|
||||
Amicable Numbers
|
||||
Problem 21
|
||||
|
||||
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n).
|
||||
If d(a) = b and d(b) = a, where a ≠ b, then a and b are an amicable pair and each of a and b are called amicable numbers.
|
||||
|
||||
For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
|
||||
|
||||
Evaluate the sum of all the amicable numbers under 10000.
|
||||
'''
|
||||
try:
|
||||
xrange #Python 2
|
||||
except NameError:
|
||||
xrange = range #Python 3
|
||||
|
||||
def sum_of_divisors(n):
|
||||
total = 0
|
||||
for i in xrange(1, int(sqrt(n)+1)):
|
||||
if n%i == 0 and i != sqrt(n):
|
||||
total += i + n//i
|
||||
elif i == sqrt(n):
|
||||
total += i
|
||||
|
||||
return total-n
|
||||
|
||||
sums = []
|
||||
total = 0
|
||||
|
||||
for i in xrange(1, 10000):
|
||||
n = sum_of_divisors(i)
|
||||
|
||||
if n < len(sums):
|
||||
if sums[n-1] == i:
|
||||
total += n + i
|
||||
|
||||
sums.append(n)
|
||||
|
||||
print(total)
|
Loading…
Reference in New Issue
Block a user