Fix mypy errors in lorentz_transformation_four_vector.py (#8075)

* updating DIRECTORY.md

* Fix mypy errors in lorentz_transformation_four_vector.py

* Remove unused symbol vars

* Add function documentation and rewrite algorithm explanation

Previous explanation was misleading, as the code only calculates Lorentz
transformations for movement in the x direction (0 velocity in the y and
z directions) and not movement in any direction

* updating DIRECTORY.md

* Update error message for speed

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Tianyi Zheng 2023-01-26 02:13:03 -05:00 committed by GitHub
parent c00af459fe
commit 57c12fab28
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 62 additions and 77 deletions

View File

@ -557,6 +557,7 @@
* [Gamma Recursive](maths/gamma_recursive.py)
* [Gaussian](maths/gaussian.py)
* [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
* [Gcd Of N Numbers](maths/gcd_of_n_numbers.py)
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
* [Greedy Coin Change](maths/greedy_coin_change.py)
* [Hamming Numbers](maths/hamming_numbers.py)

View File

@ -1,39 +1,33 @@
"""
Lorentz transformation describes the transition from a reference frame P
to another reference frame P', each of which is moving in a direction with
respect to the other. The Lorentz transformation implemented in this code
is the relativistic version using a four vector described by Minkowsky Space:
x0 = ct, x1 = x, x2 = y, and x3 = z
Lorentz transformations describe the transition between two inertial reference
frames F and F', each of which is moving in some direction with respect to the
other. This code only calculates Lorentz transformations for movement in the x
direction with no spacial rotation (i.e., a Lorentz boost in the x direction).
The Lorentz transformations are calculated here as linear transformations of
four-vectors [ct, x, y, z] described by Minkowski space. Note that t (time) is
multiplied by c (the speed of light) in the first entry of each four-vector.
NOTE: Please note that x0 is c (speed of light) times t (time).
Thus, if X = [ct; x; y; z] and X' = [ct'; x'; y'; z'] are the four-vectors for
two inertial reference frames and X' moves in the x direction with velocity v
with respect to X, then the Lorentz transformation from X to X' is X' = BX,
where
So, the Lorentz transformation using a four vector is defined as:
| γ -γβ 0 0|
B = |-γβ γ 0 0|
| 0 0 1 0|
| 0 0 0 1|
|ct'| | γ -γβ 0 0| |ct|
|x' | = |-γβ γ 0 0| *|x |
|y' | | 0 0 1 0| |y |
|z' | | 0 0 0 1| |z |
Where:
1
γ = ---------------
-----------
/ v^2 |
/(1 - ---
-/ c^2
v
β = -----
c
is the matrix describing the Lorentz boost between X and X',
γ = 1 / (1 - /) is the Lorentz factor, and β = v/c is the velocity as
a fraction of c.
Reference: https://en.wikipedia.org/wiki/Lorentz_transformation
"""
from __future__ import annotations
from math import sqrt
import numpy as np # type: ignore
from sympy import symbols # type: ignore
import numpy as np
from sympy import symbols
# Coefficient
# Speed of light (m/s)
@ -41,79 +35,77 @@ c = 299792458
# Symbols
ct, x, y, z = symbols("ct x y z")
ct_p, x_p, y_p, z_p = symbols("ct' x' y' z'")
# Vehicle's speed divided by speed of light (no units)
def beta(velocity: float) -> float:
"""
Calculates β = v/c, the given velocity as a fraction of c
>>> beta(c)
1.0
>>> beta(199792458)
0.666435904801848
>>> beta(1e5)
0.00033356409519815205
>>> beta(0.2)
Traceback (most recent call last):
...
ValueError: Speed must be greater than 1!
ValueError: Speed must be greater than or equal to 1!
"""
if velocity > c:
raise ValueError("Speed must not exceed Light Speed 299,792,458 [m/s]!")
# Usually the speed u should be much higher than 1 (c order of magnitude)
raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!")
elif velocity < 1:
raise ValueError("Speed must be greater than 1!")
# Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError("Speed must be greater than or equal to 1!")
return velocity / c
def gamma(velocity: float) -> float:
"""
Calculate the Lorentz factor γ = 1 / (1 - /) for a given velocity
>>> gamma(4)
1.0000000000000002
>>> gamma(1e5)
1.0000000556325075
>>> gamma(3e7)
1.005044845777813
>>> gamma(2.8e8)
2.7985595722318277
>>> gamma(299792451)
4627.49902669495
>>> gamma(0.3)
Traceback (most recent call last):
...
ValueError: Speed must be greater than 1!
>>> gamma(2*c)
ValueError: Speed must be greater than or equal to 1!
>>> gamma(2 * c)
Traceback (most recent call last):
...
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]!
ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
"""
return 1 / (sqrt(1 - beta(velocity) ** 2))
return 1 / sqrt(1 - beta(velocity) ** 2)
def transformation_matrix(velocity: float) -> np.array:
def transformation_matrix(velocity: float) -> np.ndarray:
"""
Calculate the Lorentz transformation matrix for movement in the x direction:
| γ -γβ 0 0|
|-γβ γ 0 0|
| 0 0 1 0|
| 0 0 0 1|
where γ is the Lorentz factor and β is the velocity as a fraction of c
>>> transformation_matrix(29979245)
array([[ 1.00503781, -0.10050378, 0. , 0. ],
[-0.10050378, 1.00503781, 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]])
>>> transformation_matrix(19979245.2)
array([[ 1.00222811, -0.06679208, 0. , 0. ],
[-0.06679208, 1.00222811, 0. , 0. ],
[ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]])
>>> transformation_matrix(1)
array([[ 1.00000000e+00, -3.33564095e-09, 0.00000000e+00,
0.00000000e+00],
@ -123,16 +115,14 @@ def transformation_matrix(velocity: float) -> np.array:
0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
1.00000000e+00]])
>>> transformation_matrix(0)
Traceback (most recent call last):
...
ValueError: Speed must be greater than 1!
ValueError: Speed must be greater than or equal to 1!
>>> transformation_matrix(c * 1.5)
Traceback (most recent call last):
...
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]!
ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
"""
return np.array(
[
@ -144,44 +134,39 @@ def transformation_matrix(velocity: float) -> np.array:
)
def transform(
velocity: float, event: np.array = np.zeros(4), symbolic: bool = True # noqa: B008
) -> np.array:
def transform(velocity: float, event: np.ndarray | None = None) -> np.ndarray:
"""
>>> transform(29979245,np.array([1,2,3,4]), False)
array([ 3.01302757e+08, -3.01302729e+07, 3.00000000e+00, 4.00000000e+00])
Calculate a Lorentz transformation for movement in the x direction given a
velocity and a four-vector for an inertial reference frame
If no four-vector is given, then calculate the transformation symbolically
with variables
>>> transform(29979245, np.array([1, 2, 3, 4]))
array([ 3.01302757e+08, -3.01302729e+07, 3.00000000e+00, 4.00000000e+00])
>>> transform(29979245)
array([1.00503781498831*ct - 0.100503778816875*x,
-0.100503778816875*ct + 1.00503781498831*x, 1.0*y, 1.0*z],
dtype=object)
>>> transform(19879210.2)
array([1.0022057787097*ct - 0.066456172618675*x,
-0.066456172618675*ct + 1.0022057787097*x, 1.0*y, 1.0*z],
dtype=object)
>>> transform(299792459, np.array([1,1,1,1]))
>>> transform(299792459, np.array([1, 1, 1, 1]))
Traceback (most recent call last):
...
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]!
>>> transform(-1, np.array([1,1,1,1]))
ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
>>> transform(-1, np.array([1, 1, 1, 1]))
Traceback (most recent call last):
...
ValueError: Speed must be greater than 1!
ValueError: Speed must be greater than or equal to 1!
"""
# Ensure event is not a vector of zeros
if not symbolic:
# x0 is ct (speed of ligt * time)
event[0] = event[0] * c
# Ensure event is not empty
if event is None:
event = np.array([ct, x, y, z]) # Symbolic four vector
else:
event[0] *= c # x0 is ct (speed of light * time)
# Symbolic four vector
event = np.array([ct, x, y, z])
return transformation_matrix(velocity).dot(event)
return transformation_matrix(velocity) @ event
if __name__ == "__main__":
@ -197,9 +182,8 @@ if __name__ == "__main__":
print(f"y' = {four_vector[2]}")
print(f"z' = {four_vector[3]}")
# Substitute symbols with numerical values:
values = np.array([1, 1, 1, 1])
sub_dict = {ct: c * values[0], x: values[1], y: values[2], z: values[3]}
numerical_vector = [four_vector[i].subs(sub_dict) for i in range(0, 4)]
# Substitute symbols with numerical values
sub_dict = {ct: c, x: 1, y: 1, z: 1}
numerical_vector = [four_vector[i].subs(sub_dict) for i in range(4)]
print(f"\n{numerical_vector}")