mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-04 12:56:45 +00:00
Fix mypy
errors in lorentz_transformation_four_vector.py
(#8075)
* updating DIRECTORY.md * Fix mypy errors in lorentz_transformation_four_vector.py * Remove unused symbol vars * Add function documentation and rewrite algorithm explanation Previous explanation was misleading, as the code only calculates Lorentz transformations for movement in the x direction (0 velocity in the y and z directions) and not movement in any direction * updating DIRECTORY.md * Update error message for speed Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
c00af459fe
commit
57c12fab28
@ -557,6 +557,7 @@
|
|||||||
* [Gamma Recursive](maths/gamma_recursive.py)
|
* [Gamma Recursive](maths/gamma_recursive.py)
|
||||||
* [Gaussian](maths/gaussian.py)
|
* [Gaussian](maths/gaussian.py)
|
||||||
* [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
|
* [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
|
||||||
|
* [Gcd Of N Numbers](maths/gcd_of_n_numbers.py)
|
||||||
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
|
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
|
||||||
* [Greedy Coin Change](maths/greedy_coin_change.py)
|
* [Greedy Coin Change](maths/greedy_coin_change.py)
|
||||||
* [Hamming Numbers](maths/hamming_numbers.py)
|
* [Hamming Numbers](maths/hamming_numbers.py)
|
||||||
|
@ -1,39 +1,33 @@
|
|||||||
"""
|
"""
|
||||||
Lorentz transformation describes the transition from a reference frame P
|
Lorentz transformations describe the transition between two inertial reference
|
||||||
to another reference frame P', each of which is moving in a direction with
|
frames F and F', each of which is moving in some direction with respect to the
|
||||||
respect to the other. The Lorentz transformation implemented in this code
|
other. This code only calculates Lorentz transformations for movement in the x
|
||||||
is the relativistic version using a four vector described by Minkowsky Space:
|
direction with no spacial rotation (i.e., a Lorentz boost in the x direction).
|
||||||
x0 = ct, x1 = x, x2 = y, and x3 = z
|
The Lorentz transformations are calculated here as linear transformations of
|
||||||
|
four-vectors [ct, x, y, z] described by Minkowski space. Note that t (time) is
|
||||||
|
multiplied by c (the speed of light) in the first entry of each four-vector.
|
||||||
|
|
||||||
NOTE: Please note that x0 is c (speed of light) times t (time).
|
Thus, if X = [ct; x; y; z] and X' = [ct'; x'; y'; z'] are the four-vectors for
|
||||||
|
two inertial reference frames and X' moves in the x direction with velocity v
|
||||||
|
with respect to X, then the Lorentz transformation from X to X' is X' = BX,
|
||||||
|
where
|
||||||
|
|
||||||
So, the Lorentz transformation using a four vector is defined as:
|
| γ -γβ 0 0|
|
||||||
|
B = |-γβ γ 0 0|
|
||||||
|
| 0 0 1 0|
|
||||||
|
| 0 0 0 1|
|
||||||
|
|
||||||
|ct'| | γ -γβ 0 0| |ct|
|
is the matrix describing the Lorentz boost between X and X',
|
||||||
|x' | = |-γβ γ 0 0| *|x |
|
γ = 1 / √(1 - v²/c²) is the Lorentz factor, and β = v/c is the velocity as
|
||||||
|y' | | 0 0 1 0| |y |
|
a fraction of c.
|
||||||
|z' | | 0 0 0 1| |z |
|
|
||||||
|
|
||||||
Where:
|
|
||||||
1
|
|
||||||
γ = ---------------
|
|
||||||
-----------
|
|
||||||
/ v^2 |
|
|
||||||
/(1 - ---
|
|
||||||
-/ c^2
|
|
||||||
|
|
||||||
v
|
|
||||||
β = -----
|
|
||||||
c
|
|
||||||
|
|
||||||
Reference: https://en.wikipedia.org/wiki/Lorentz_transformation
|
Reference: https://en.wikipedia.org/wiki/Lorentz_transformation
|
||||||
"""
|
"""
|
||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
from math import sqrt
|
from math import sqrt
|
||||||
|
|
||||||
import numpy as np # type: ignore
|
import numpy as np
|
||||||
from sympy import symbols # type: ignore
|
from sympy import symbols
|
||||||
|
|
||||||
# Coefficient
|
# Coefficient
|
||||||
# Speed of light (m/s)
|
# Speed of light (m/s)
|
||||||
@ -41,79 +35,77 @@ c = 299792458
|
|||||||
|
|
||||||
# Symbols
|
# Symbols
|
||||||
ct, x, y, z = symbols("ct x y z")
|
ct, x, y, z = symbols("ct x y z")
|
||||||
ct_p, x_p, y_p, z_p = symbols("ct' x' y' z'")
|
|
||||||
|
|
||||||
|
|
||||||
# Vehicle's speed divided by speed of light (no units)
|
# Vehicle's speed divided by speed of light (no units)
|
||||||
def beta(velocity: float) -> float:
|
def beta(velocity: float) -> float:
|
||||||
"""
|
"""
|
||||||
|
Calculates β = v/c, the given velocity as a fraction of c
|
||||||
>>> beta(c)
|
>>> beta(c)
|
||||||
1.0
|
1.0
|
||||||
|
|
||||||
>>> beta(199792458)
|
>>> beta(199792458)
|
||||||
0.666435904801848
|
0.666435904801848
|
||||||
|
|
||||||
>>> beta(1e5)
|
>>> beta(1e5)
|
||||||
0.00033356409519815205
|
0.00033356409519815205
|
||||||
|
|
||||||
>>> beta(0.2)
|
>>> beta(0.2)
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
ValueError: Speed must be greater than 1!
|
ValueError: Speed must be greater than or equal to 1!
|
||||||
"""
|
"""
|
||||||
if velocity > c:
|
if velocity > c:
|
||||||
raise ValueError("Speed must not exceed Light Speed 299,792,458 [m/s]!")
|
raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!")
|
||||||
|
|
||||||
# Usually the speed u should be much higher than 1 (c order of magnitude)
|
|
||||||
elif velocity < 1:
|
elif velocity < 1:
|
||||||
raise ValueError("Speed must be greater than 1!")
|
# Usually the speed should be much higher than 1 (c order of magnitude)
|
||||||
|
raise ValueError("Speed must be greater than or equal to 1!")
|
||||||
|
|
||||||
return velocity / c
|
return velocity / c
|
||||||
|
|
||||||
|
|
||||||
def gamma(velocity: float) -> float:
|
def gamma(velocity: float) -> float:
|
||||||
"""
|
"""
|
||||||
|
Calculate the Lorentz factor γ = 1 / √(1 - v²/c²) for a given velocity
|
||||||
>>> gamma(4)
|
>>> gamma(4)
|
||||||
1.0000000000000002
|
1.0000000000000002
|
||||||
|
|
||||||
>>> gamma(1e5)
|
>>> gamma(1e5)
|
||||||
1.0000000556325075
|
1.0000000556325075
|
||||||
|
|
||||||
>>> gamma(3e7)
|
>>> gamma(3e7)
|
||||||
1.005044845777813
|
1.005044845777813
|
||||||
|
|
||||||
>>> gamma(2.8e8)
|
>>> gamma(2.8e8)
|
||||||
2.7985595722318277
|
2.7985595722318277
|
||||||
|
|
||||||
>>> gamma(299792451)
|
>>> gamma(299792451)
|
||||||
4627.49902669495
|
4627.49902669495
|
||||||
|
|
||||||
>>> gamma(0.3)
|
>>> gamma(0.3)
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
ValueError: Speed must be greater than 1!
|
ValueError: Speed must be greater than or equal to 1!
|
||||||
|
>>> gamma(2 * c)
|
||||||
>>> gamma(2*c)
|
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]!
|
ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
|
||||||
"""
|
"""
|
||||||
return 1 / (sqrt(1 - beta(velocity) ** 2))
|
return 1 / sqrt(1 - beta(velocity) ** 2)
|
||||||
|
|
||||||
|
|
||||||
def transformation_matrix(velocity: float) -> np.array:
|
def transformation_matrix(velocity: float) -> np.ndarray:
|
||||||
"""
|
"""
|
||||||
|
Calculate the Lorentz transformation matrix for movement in the x direction:
|
||||||
|
|
||||||
|
| γ -γβ 0 0|
|
||||||
|
|-γβ γ 0 0|
|
||||||
|
| 0 0 1 0|
|
||||||
|
| 0 0 0 1|
|
||||||
|
|
||||||
|
where γ is the Lorentz factor and β is the velocity as a fraction of c
|
||||||
>>> transformation_matrix(29979245)
|
>>> transformation_matrix(29979245)
|
||||||
array([[ 1.00503781, -0.10050378, 0. , 0. ],
|
array([[ 1.00503781, -0.10050378, 0. , 0. ],
|
||||||
[-0.10050378, 1.00503781, 0. , 0. ],
|
[-0.10050378, 1.00503781, 0. , 0. ],
|
||||||
[ 0. , 0. , 1. , 0. ],
|
[ 0. , 0. , 1. , 0. ],
|
||||||
[ 0. , 0. , 0. , 1. ]])
|
[ 0. , 0. , 0. , 1. ]])
|
||||||
|
|
||||||
>>> transformation_matrix(19979245.2)
|
>>> transformation_matrix(19979245.2)
|
||||||
array([[ 1.00222811, -0.06679208, 0. , 0. ],
|
array([[ 1.00222811, -0.06679208, 0. , 0. ],
|
||||||
[-0.06679208, 1.00222811, 0. , 0. ],
|
[-0.06679208, 1.00222811, 0. , 0. ],
|
||||||
[ 0. , 0. , 1. , 0. ],
|
[ 0. , 0. , 1. , 0. ],
|
||||||
[ 0. , 0. , 0. , 1. ]])
|
[ 0. , 0. , 0. , 1. ]])
|
||||||
|
|
||||||
>>> transformation_matrix(1)
|
>>> transformation_matrix(1)
|
||||||
array([[ 1.00000000e+00, -3.33564095e-09, 0.00000000e+00,
|
array([[ 1.00000000e+00, -3.33564095e-09, 0.00000000e+00,
|
||||||
0.00000000e+00],
|
0.00000000e+00],
|
||||||
@ -123,16 +115,14 @@ def transformation_matrix(velocity: float) -> np.array:
|
|||||||
0.00000000e+00],
|
0.00000000e+00],
|
||||||
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
|
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
|
||||||
1.00000000e+00]])
|
1.00000000e+00]])
|
||||||
|
|
||||||
>>> transformation_matrix(0)
|
>>> transformation_matrix(0)
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
ValueError: Speed must be greater than 1!
|
ValueError: Speed must be greater than or equal to 1!
|
||||||
|
|
||||||
>>> transformation_matrix(c * 1.5)
|
>>> transformation_matrix(c * 1.5)
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]!
|
ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
|
||||||
"""
|
"""
|
||||||
return np.array(
|
return np.array(
|
||||||
[
|
[
|
||||||
@ -144,44 +134,39 @@ def transformation_matrix(velocity: float) -> np.array:
|
|||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def transform(
|
def transform(velocity: float, event: np.ndarray | None = None) -> np.ndarray:
|
||||||
velocity: float, event: np.array = np.zeros(4), symbolic: bool = True # noqa: B008
|
|
||||||
) -> np.array:
|
|
||||||
"""
|
"""
|
||||||
>>> transform(29979245,np.array([1,2,3,4]), False)
|
Calculate a Lorentz transformation for movement in the x direction given a
|
||||||
array([ 3.01302757e+08, -3.01302729e+07, 3.00000000e+00, 4.00000000e+00])
|
velocity and a four-vector for an inertial reference frame
|
||||||
|
|
||||||
|
If no four-vector is given, then calculate the transformation symbolically
|
||||||
|
with variables
|
||||||
|
>>> transform(29979245, np.array([1, 2, 3, 4]))
|
||||||
|
array([ 3.01302757e+08, -3.01302729e+07, 3.00000000e+00, 4.00000000e+00])
|
||||||
>>> transform(29979245)
|
>>> transform(29979245)
|
||||||
array([1.00503781498831*ct - 0.100503778816875*x,
|
array([1.00503781498831*ct - 0.100503778816875*x,
|
||||||
-0.100503778816875*ct + 1.00503781498831*x, 1.0*y, 1.0*z],
|
-0.100503778816875*ct + 1.00503781498831*x, 1.0*y, 1.0*z],
|
||||||
dtype=object)
|
dtype=object)
|
||||||
|
|
||||||
>>> transform(19879210.2)
|
>>> transform(19879210.2)
|
||||||
array([1.0022057787097*ct - 0.066456172618675*x,
|
array([1.0022057787097*ct - 0.066456172618675*x,
|
||||||
-0.066456172618675*ct + 1.0022057787097*x, 1.0*y, 1.0*z],
|
-0.066456172618675*ct + 1.0022057787097*x, 1.0*y, 1.0*z],
|
||||||
dtype=object)
|
dtype=object)
|
||||||
|
>>> transform(299792459, np.array([1, 1, 1, 1]))
|
||||||
>>> transform(299792459, np.array([1,1,1,1]))
|
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]!
|
ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
|
||||||
|
>>> transform(-1, np.array([1, 1, 1, 1]))
|
||||||
>>> transform(-1, np.array([1,1,1,1]))
|
|
||||||
Traceback (most recent call last):
|
Traceback (most recent call last):
|
||||||
...
|
...
|
||||||
ValueError: Speed must be greater than 1!
|
ValueError: Speed must be greater than or equal to 1!
|
||||||
"""
|
"""
|
||||||
# Ensure event is not a vector of zeros
|
# Ensure event is not empty
|
||||||
if not symbolic:
|
if event is None:
|
||||||
|
event = np.array([ct, x, y, z]) # Symbolic four vector
|
||||||
# x0 is ct (speed of ligt * time)
|
|
||||||
event[0] = event[0] * c
|
|
||||||
else:
|
else:
|
||||||
|
event[0] *= c # x0 is ct (speed of light * time)
|
||||||
|
|
||||||
# Symbolic four vector
|
return transformation_matrix(velocity) @ event
|
||||||
event = np.array([ct, x, y, z])
|
|
||||||
|
|
||||||
return transformation_matrix(velocity).dot(event)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@ -197,9 +182,8 @@ if __name__ == "__main__":
|
|||||||
print(f"y' = {four_vector[2]}")
|
print(f"y' = {four_vector[2]}")
|
||||||
print(f"z' = {four_vector[3]}")
|
print(f"z' = {four_vector[3]}")
|
||||||
|
|
||||||
# Substitute symbols with numerical values:
|
# Substitute symbols with numerical values
|
||||||
values = np.array([1, 1, 1, 1])
|
sub_dict = {ct: c, x: 1, y: 1, z: 1}
|
||||||
sub_dict = {ct: c * values[0], x: values[1], y: values[2], z: values[3]}
|
numerical_vector = [four_vector[i].subs(sub_dict) for i in range(4)]
|
||||||
numerical_vector = [four_vector[i].subs(sub_dict) for i in range(0, 4)]
|
|
||||||
|
|
||||||
print(f"\n{numerical_vector}")
|
print(f"\n{numerical_vector}")
|
||||||
|
Loading…
x
Reference in New Issue
Block a user