Fix mypy errors in lorentz_transformation_four_vector.py ()

* updating DIRECTORY.md

* Fix mypy errors in lorentz_transformation_four_vector.py

* Remove unused symbol vars

* Add function documentation and rewrite algorithm explanation

Previous explanation was misleading, as the code only calculates Lorentz
transformations for movement in the x direction (0 velocity in the y and
z directions) and not movement in any direction

* updating DIRECTORY.md

* Update error message for speed

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Tianyi Zheng 2023-01-26 02:13:03 -05:00 committed by GitHub
parent c00af459fe
commit 57c12fab28
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 62 additions and 77 deletions

@ -557,6 +557,7 @@
* [Gamma Recursive](maths/gamma_recursive.py) * [Gamma Recursive](maths/gamma_recursive.py)
* [Gaussian](maths/gaussian.py) * [Gaussian](maths/gaussian.py)
* [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py) * [Gaussian Error Linear Unit](maths/gaussian_error_linear_unit.py)
* [Gcd Of N Numbers](maths/gcd_of_n_numbers.py)
* [Greatest Common Divisor](maths/greatest_common_divisor.py) * [Greatest Common Divisor](maths/greatest_common_divisor.py)
* [Greedy Coin Change](maths/greedy_coin_change.py) * [Greedy Coin Change](maths/greedy_coin_change.py)
* [Hamming Numbers](maths/hamming_numbers.py) * [Hamming Numbers](maths/hamming_numbers.py)

@ -1,39 +1,33 @@
""" """
Lorentz transformation describes the transition from a reference frame P Lorentz transformations describe the transition between two inertial reference
to another reference frame P', each of which is moving in a direction with frames F and F', each of which is moving in some direction with respect to the
respect to the other. The Lorentz transformation implemented in this code other. This code only calculates Lorentz transformations for movement in the x
is the relativistic version using a four vector described by Minkowsky Space: direction with no spacial rotation (i.e., a Lorentz boost in the x direction).
x0 = ct, x1 = x, x2 = y, and x3 = z The Lorentz transformations are calculated here as linear transformations of
four-vectors [ct, x, y, z] described by Minkowski space. Note that t (time) is
multiplied by c (the speed of light) in the first entry of each four-vector.
NOTE: Please note that x0 is c (speed of light) times t (time). Thus, if X = [ct; x; y; z] and X' = [ct'; x'; y'; z'] are the four-vectors for
two inertial reference frames and X' moves in the x direction with velocity v
with respect to X, then the Lorentz transformation from X to X' is X' = BX,
where
So, the Lorentz transformation using a four vector is defined as: | γ -γβ 0 0|
B = |-γβ γ 0 0|
| 0 0 1 0|
| 0 0 0 1|
|ct'| | γ -γβ 0 0| |ct| is the matrix describing the Lorentz boost between X and X',
|x' | = |-γβ γ 0 0| *|x | γ = 1 / (1 - /) is the Lorentz factor, and β = v/c is the velocity as
|y' | | 0 0 1 0| |y | a fraction of c.
|z' | | 0 0 0 1| |z |
Where:
1
γ = ---------------
-----------
/ v^2 |
/(1 - ---
-/ c^2
v
β = -----
c
Reference: https://en.wikipedia.org/wiki/Lorentz_transformation Reference: https://en.wikipedia.org/wiki/Lorentz_transformation
""" """
from __future__ import annotations
from math import sqrt from math import sqrt
import numpy as np # type: ignore import numpy as np
from sympy import symbols # type: ignore from sympy import symbols
# Coefficient # Coefficient
# Speed of light (m/s) # Speed of light (m/s)
@ -41,79 +35,77 @@ c = 299792458
# Symbols # Symbols
ct, x, y, z = symbols("ct x y z") ct, x, y, z = symbols("ct x y z")
ct_p, x_p, y_p, z_p = symbols("ct' x' y' z'")
# Vehicle's speed divided by speed of light (no units) # Vehicle's speed divided by speed of light (no units)
def beta(velocity: float) -> float: def beta(velocity: float) -> float:
""" """
Calculates β = v/c, the given velocity as a fraction of c
>>> beta(c) >>> beta(c)
1.0 1.0
>>> beta(199792458) >>> beta(199792458)
0.666435904801848 0.666435904801848
>>> beta(1e5) >>> beta(1e5)
0.00033356409519815205 0.00033356409519815205
>>> beta(0.2) >>> beta(0.2)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: Speed must be greater than 1! ValueError: Speed must be greater than or equal to 1!
""" """
if velocity > c: if velocity > c:
raise ValueError("Speed must not exceed Light Speed 299,792,458 [m/s]!") raise ValueError("Speed must not exceed light speed 299,792,458 [m/s]!")
# Usually the speed u should be much higher than 1 (c order of magnitude)
elif velocity < 1: elif velocity < 1:
raise ValueError("Speed must be greater than 1!") # Usually the speed should be much higher than 1 (c order of magnitude)
raise ValueError("Speed must be greater than or equal to 1!")
return velocity / c return velocity / c
def gamma(velocity: float) -> float: def gamma(velocity: float) -> float:
""" """
Calculate the Lorentz factor γ = 1 / (1 - /) for a given velocity
>>> gamma(4) >>> gamma(4)
1.0000000000000002 1.0000000000000002
>>> gamma(1e5) >>> gamma(1e5)
1.0000000556325075 1.0000000556325075
>>> gamma(3e7) >>> gamma(3e7)
1.005044845777813 1.005044845777813
>>> gamma(2.8e8) >>> gamma(2.8e8)
2.7985595722318277 2.7985595722318277
>>> gamma(299792451) >>> gamma(299792451)
4627.49902669495 4627.49902669495
>>> gamma(0.3) >>> gamma(0.3)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: Speed must be greater than 1! ValueError: Speed must be greater than or equal to 1!
>>> gamma(2 * c)
>>> gamma(2*c)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]! ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
""" """
return 1 / (sqrt(1 - beta(velocity) ** 2)) return 1 / sqrt(1 - beta(velocity) ** 2)
def transformation_matrix(velocity: float) -> np.array: def transformation_matrix(velocity: float) -> np.ndarray:
""" """
Calculate the Lorentz transformation matrix for movement in the x direction:
| γ -γβ 0 0|
|-γβ γ 0 0|
| 0 0 1 0|
| 0 0 0 1|
where γ is the Lorentz factor and β is the velocity as a fraction of c
>>> transformation_matrix(29979245) >>> transformation_matrix(29979245)
array([[ 1.00503781, -0.10050378, 0. , 0. ], array([[ 1.00503781, -0.10050378, 0. , 0. ],
[-0.10050378, 1.00503781, 0. , 0. ], [-0.10050378, 1.00503781, 0. , 0. ],
[ 0. , 0. , 1. , 0. ], [ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]]) [ 0. , 0. , 0. , 1. ]])
>>> transformation_matrix(19979245.2) >>> transformation_matrix(19979245.2)
array([[ 1.00222811, -0.06679208, 0. , 0. ], array([[ 1.00222811, -0.06679208, 0. , 0. ],
[-0.06679208, 1.00222811, 0. , 0. ], [-0.06679208, 1.00222811, 0. , 0. ],
[ 0. , 0. , 1. , 0. ], [ 0. , 0. , 1. , 0. ],
[ 0. , 0. , 0. , 1. ]]) [ 0. , 0. , 0. , 1. ]])
>>> transformation_matrix(1) >>> transformation_matrix(1)
array([[ 1.00000000e+00, -3.33564095e-09, 0.00000000e+00, array([[ 1.00000000e+00, -3.33564095e-09, 0.00000000e+00,
0.00000000e+00], 0.00000000e+00],
@ -123,16 +115,14 @@ def transformation_matrix(velocity: float) -> np.array:
0.00000000e+00], 0.00000000e+00],
[ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00, [ 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
1.00000000e+00]]) 1.00000000e+00]])
>>> transformation_matrix(0) >>> transformation_matrix(0)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: Speed must be greater than 1! ValueError: Speed must be greater than or equal to 1!
>>> transformation_matrix(c * 1.5) >>> transformation_matrix(c * 1.5)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]! ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
""" """
return np.array( return np.array(
[ [
@ -144,44 +134,39 @@ def transformation_matrix(velocity: float) -> np.array:
) )
def transform( def transform(velocity: float, event: np.ndarray | None = None) -> np.ndarray:
velocity: float, event: np.array = np.zeros(4), symbolic: bool = True # noqa: B008
) -> np.array:
""" """
>>> transform(29979245,np.array([1,2,3,4]), False) Calculate a Lorentz transformation for movement in the x direction given a
array([ 3.01302757e+08, -3.01302729e+07, 3.00000000e+00, 4.00000000e+00]) velocity and a four-vector for an inertial reference frame
If no four-vector is given, then calculate the transformation symbolically
with variables
>>> transform(29979245, np.array([1, 2, 3, 4]))
array([ 3.01302757e+08, -3.01302729e+07, 3.00000000e+00, 4.00000000e+00])
>>> transform(29979245) >>> transform(29979245)
array([1.00503781498831*ct - 0.100503778816875*x, array([1.00503781498831*ct - 0.100503778816875*x,
-0.100503778816875*ct + 1.00503781498831*x, 1.0*y, 1.0*z], -0.100503778816875*ct + 1.00503781498831*x, 1.0*y, 1.0*z],
dtype=object) dtype=object)
>>> transform(19879210.2) >>> transform(19879210.2)
array([1.0022057787097*ct - 0.066456172618675*x, array([1.0022057787097*ct - 0.066456172618675*x,
-0.066456172618675*ct + 1.0022057787097*x, 1.0*y, 1.0*z], -0.066456172618675*ct + 1.0022057787097*x, 1.0*y, 1.0*z],
dtype=object) dtype=object)
>>> transform(299792459, np.array([1, 1, 1, 1]))
>>> transform(299792459, np.array([1,1,1,1]))
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: Speed must not exceed Light Speed 299,792,458 [m/s]! ValueError: Speed must not exceed light speed 299,792,458 [m/s]!
>>> transform(-1, np.array([1, 1, 1, 1]))
>>> transform(-1, np.array([1,1,1,1]))
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: Speed must be greater than 1! ValueError: Speed must be greater than or equal to 1!
""" """
# Ensure event is not a vector of zeros # Ensure event is not empty
if not symbolic: if event is None:
event = np.array([ct, x, y, z]) # Symbolic four vector
# x0 is ct (speed of ligt * time)
event[0] = event[0] * c
else: else:
event[0] *= c # x0 is ct (speed of light * time)
# Symbolic four vector return transformation_matrix(velocity) @ event
event = np.array([ct, x, y, z])
return transformation_matrix(velocity).dot(event)
if __name__ == "__main__": if __name__ == "__main__":
@ -197,9 +182,8 @@ if __name__ == "__main__":
print(f"y' = {four_vector[2]}") print(f"y' = {four_vector[2]}")
print(f"z' = {four_vector[3]}") print(f"z' = {four_vector[3]}")
# Substitute symbols with numerical values: # Substitute symbols with numerical values
values = np.array([1, 1, 1, 1]) sub_dict = {ct: c, x: 1, y: 1, z: 1}
sub_dict = {ct: c * values[0], x: values[1], y: values[2], z: values[3]} numerical_vector = [four_vector[i].subs(sub_dict) for i in range(4)]
numerical_vector = [four_vector[i].subs(sub_dict) for i in range(0, 4)]
print(f"\n{numerical_vector}") print(f"\n{numerical_vector}")