Removed redundant greatest_common_divisor code (#9358)

* Deleted greatest_common_divisor def from many files and instead imported the method from Maths folder

* Deleted greatest_common_divisor def from many files and instead imported the method from Maths folder, also fixed comments

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Deleted greatest_common_divisor def from many files and instead imported the method from Maths folder, also fixed comments

* Imports organized

* recursive gcd function implementation rolledback

* more gcd duplicates removed

* more gcd duplicates removed

* Update maths/carmichael_number.py

* updated files

* moved a file to another location

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
Siddik Patel 2023-10-09 17:49:12 +05:30 committed by GitHub
parent 876087be99
commit 583a614fef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 24 additions and 131 deletions

View File

@ -1,11 +1,13 @@
from __future__ import annotations from __future__ import annotations
from maths.greatest_common_divisor import greatest_common_divisor
def diophantine(a: int, b: int, c: int) -> tuple[float, float]: def diophantine(a: int, b: int, c: int) -> tuple[float, float]:
""" """
Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the
diophantine equation a*x + b*y = c has a solution (where x and y are integers) diophantine equation a*x + b*y = c has a solution (where x and y are integers)
iff gcd(a,b) divides c. iff greatest_common_divisor(a,b) divides c.
GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor )
@ -22,7 +24,7 @@ def diophantine(a: int, b: int, c: int) -> tuple[float, float]:
assert ( assert (
c % greatest_common_divisor(a, b) == 0 c % greatest_common_divisor(a, b) == 0
) # greatest_common_divisor(a,b) function implemented below ) # greatest_common_divisor(a,b) is in maths directory
(d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below (d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below
r = c / d r = c / d
return (r * x, r * y) return (r * x, r * y)
@ -69,32 +71,6 @@ def diophantine_all_soln(a: int, b: int, c: int, n: int = 2) -> None:
print(x, y) print(x, y)
def greatest_common_divisor(a: int, b: int) -> int:
"""
Euclid's Lemma : d divides a and b, if and only if d divides a-b and b
Euclid's Algorithm
>>> greatest_common_divisor(7,5)
1
Note : In number theory, two integers a and b are said to be relatively prime,
mutually prime, or co-prime if the only positive integer (factor) that
divides both of them is 1 i.e., gcd(a,b) = 1.
>>> greatest_common_divisor(121, 11)
11
"""
if a < b:
a, b = b, a
while a % b != 0:
a, b = b, a % b
return b
def extended_gcd(a: int, b: int) -> tuple[int, int, int]: def extended_gcd(a: int, b: int) -> tuple[int, int, int]:
""" """
Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers

View File

@ -1,6 +1,8 @@
import random import random
import sys import sys
from maths.greatest_common_divisor import gcd_by_iterative
from . import cryptomath_module as cryptomath from . import cryptomath_module as cryptomath
SYMBOLS = ( SYMBOLS = (
@ -26,7 +28,7 @@ def check_keys(key_a: int, key_b: int, mode: str) -> None:
"Key A must be greater than 0 and key B must " "Key A must be greater than 0 and key B must "
f"be between 0 and {len(SYMBOLS) - 1}." f"be between 0 and {len(SYMBOLS) - 1}."
) )
if cryptomath.gcd(key_a, len(SYMBOLS)) != 1: if gcd_by_iterative(key_a, len(SYMBOLS)) != 1:
sys.exit( sys.exit(
f"Key A {key_a} and the symbol set size {len(SYMBOLS)} " f"Key A {key_a} and the symbol set size {len(SYMBOLS)} "
"are not relatively prime. Choose a different key." "are not relatively prime. Choose a different key."
@ -76,7 +78,7 @@ def get_random_key() -> int:
while True: while True:
key_b = random.randint(2, len(SYMBOLS)) key_b = random.randint(2, len(SYMBOLS))
key_b = random.randint(2, len(SYMBOLS)) key_b = random.randint(2, len(SYMBOLS))
if cryptomath.gcd(key_b, len(SYMBOLS)) == 1 and key_b % len(SYMBOLS) != 0: if gcd_by_iterative(key_b, len(SYMBOLS)) == 1 and key_b % len(SYMBOLS) != 0:
return key_b * len(SYMBOLS) + key_b return key_b * len(SYMBOLS) + key_b

View File

@ -1,11 +1,8 @@
def gcd(a: int, b: int) -> int: from maths.greatest_common_divisor import gcd_by_iterative
while a != 0:
a, b = b % a, a
return b
def find_mod_inverse(a: int, m: int) -> int: def find_mod_inverse(a: int, m: int) -> int:
if gcd(a, m) != 1: if gcd_by_iterative(a, m) != 1:
msg = f"mod inverse of {a!r} and {m!r} does not exist" msg = f"mod inverse of {a!r} and {m!r} does not exist"
raise ValueError(msg) raise ValueError(msg)
u1, u2, u3 = 1, 0, a u1, u2, u3 = 1, 0, a

View File

@ -39,19 +39,7 @@ import string
import numpy import numpy
from maths.greatest_common_divisor import greatest_common_divisor
def greatest_common_divisor(a: int, b: int) -> int:
"""
>>> greatest_common_divisor(4, 8)
4
>>> greatest_common_divisor(8, 4)
4
>>> greatest_common_divisor(4, 7)
1
>>> greatest_common_divisor(0, 10)
10
"""
return b if a == 0 else greatest_common_divisor(b % a, a)
class HillCipher: class HillCipher:

View File

@ -2,6 +2,8 @@ import os
import random import random
import sys import sys
from maths.greatest_common_divisor import gcd_by_iterative
from . import cryptomath_module, rabin_miller from . import cryptomath_module, rabin_miller
@ -27,7 +29,7 @@ def generate_key(key_size: int) -> tuple[tuple[int, int], tuple[int, int]]:
# Generate e that is relatively prime to (p - 1) * (q - 1) # Generate e that is relatively prime to (p - 1) * (q - 1)
while True: while True:
e = random.randrange(2 ** (key_size - 1), 2 ** (key_size)) e = random.randrange(2 ** (key_size - 1), 2 ** (key_size))
if cryptomath_module.gcd(e, (p - 1) * (q - 1)) == 1: if gcd_by_iterative(e, (p - 1) * (q - 1)) == 1:
break break
# Calculate d that is mod inverse of e # Calculate d that is mod inverse of e

View File

@ -10,14 +10,7 @@ satisfies the following modular arithmetic condition:
Examples of Carmichael Numbers: 561, 1105, ... Examples of Carmichael Numbers: 561, 1105, ...
https://en.wikipedia.org/wiki/Carmichael_number https://en.wikipedia.org/wiki/Carmichael_number
""" """
from maths.greatest_common_divisor import greatest_common_divisor
def gcd(a: int, b: int) -> int:
if a < b:
return gcd(b, a)
if a % b == 0:
return b
return gcd(b, a % b)
def power(x: int, y: int, mod: int) -> int: def power(x: int, y: int, mod: int) -> int:
@ -33,7 +26,7 @@ def power(x: int, y: int, mod: int) -> int:
def is_carmichael_number(n: int) -> bool: def is_carmichael_number(n: int) -> bool:
b = 2 b = 2
while b < n: while b < n:
if gcd(b, n) == 1 and power(b, n - 1, n) != 1: if greatest_common_divisor(b, n) == 1 and power(b, n - 1, n) != 1:
return False return False
b += 1 b += 1
return True return True

View File

@ -1,6 +1,8 @@
import unittest import unittest
from timeit import timeit from timeit import timeit
from maths.greatest_common_divisor import greatest_common_divisor
def least_common_multiple_slow(first_num: int, second_num: int) -> int: def least_common_multiple_slow(first_num: int, second_num: int) -> int:
""" """
@ -20,26 +22,6 @@ def least_common_multiple_slow(first_num: int, second_num: int) -> int:
return common_mult return common_mult
def greatest_common_divisor(a: int, b: int) -> int:
"""
Calculate Greatest Common Divisor (GCD).
see greatest_common_divisor.py
>>> greatest_common_divisor(24, 40)
8
>>> greatest_common_divisor(1, 1)
1
>>> greatest_common_divisor(1, 800)
1
>>> greatest_common_divisor(11, 37)
1
>>> greatest_common_divisor(3, 5)
1
>>> greatest_common_divisor(16, 4)
4
"""
return b if a == 0 else greatest_common_divisor(b % a, a)
def least_common_multiple_fast(first_num: int, second_num: int) -> int: def least_common_multiple_fast(first_num: int, second_num: int) -> int:
""" """
Find the least common multiple of two numbers. Find the least common multiple of two numbers.

View File

@ -21,7 +21,6 @@ get_primes_between(pNumber1, pNumber2)
is_even(number) is_even(number)
is_odd(number) is_odd(number)
gcd(number1, number2) // greatest common divisor
kg_v(number1, number2) // least common multiple kg_v(number1, number2) // least common multiple
get_divisors(number) // all divisors of 'number' inclusive 1, number get_divisors(number) // all divisors of 'number' inclusive 1, number
is_perfect_number(number) is_perfect_number(number)
@ -40,6 +39,8 @@ goldbach(number) // Goldbach's assumption
from math import sqrt from math import sqrt
from maths.greatest_common_divisor import gcd_by_iterative
def is_prime(number: int) -> bool: def is_prime(number: int) -> bool:
""" """
@ -317,39 +318,6 @@ def goldbach(number):
# ---------------------------------------------- # ----------------------------------------------
def gcd(number1, number2):
"""
Greatest common divisor
input: two positive integer 'number1' and 'number2'
returns the greatest common divisor of 'number1' and 'number2'
"""
# precondition
assert (
isinstance(number1, int)
and isinstance(number2, int)
and (number1 >= 0)
and (number2 >= 0)
), "'number1' and 'number2' must been positive integer."
rest = 0
while number2 != 0:
rest = number1 % number2
number1 = number2
number2 = rest
# precondition
assert isinstance(number1, int) and (
number1 >= 0
), "'number' must been from type int and positive"
return number1
# ----------------------------------------------------
def kg_v(number1, number2): def kg_v(number1, number2):
""" """
Least common multiple Least common multiple
@ -567,14 +535,14 @@ def simplify_fraction(numerator, denominator):
), "The arguments must been from type int and 'denominator' != 0" ), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator. # build the greatest common divisor of numerator and denominator.
gcd_of_fraction = gcd(abs(numerator), abs(denominator)) gcd_of_fraction = gcd_by_iterative(abs(numerator), abs(denominator))
# precondition # precondition
assert ( assert (
isinstance(gcd_of_fraction, int) isinstance(gcd_of_fraction, int)
and (numerator % gcd_of_fraction == 0) and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)" ), "Error in function gcd_by_iterative(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)

View File

@ -1,3 +1,5 @@
from maths.greatest_common_divisor import greatest_common_divisor
""" """
Project Euler Problem 5: https://projecteuler.net/problem=5 Project Euler Problem 5: https://projecteuler.net/problem=5
@ -16,23 +18,6 @@ References:
""" """
def greatest_common_divisor(x: int, y: int) -> int:
"""
Euclidean Greatest Common Divisor algorithm
>>> greatest_common_divisor(0, 0)
0
>>> greatest_common_divisor(23, 42)
1
>>> greatest_common_divisor(15, 33)
3
>>> greatest_common_divisor(12345, 67890)
15
"""
return x if y == 0 else greatest_common_divisor(y, x % y)
def lcm(x: int, y: int) -> int: def lcm(x: int, y: int) -> int:
""" """
Least Common Multiple. Least Common Multiple.