mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Project Euler 57 - Square root convergents (#3259)
* include solution for problem 57 * fix line to long errors * update filenames and code to comply with new regulations * more descriptive local variables
This commit is contained in:
parent
fc98961814
commit
58875674da
0
project_euler/problem_057/__init__.py
Normal file
0
project_euler/problem_057/__init__.py
Normal file
48
project_euler/problem_057/sol1.py
Normal file
48
project_euler/problem_057/sol1.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
"""
|
||||
Project Euler Problem 57: https://projecteuler.net/problem=57
|
||||
It is possible to show that the square root of two can be expressed as an infinite
|
||||
continued fraction.
|
||||
|
||||
sqrt(2) = 1 + 1 / (2 + 1 / (2 + 1 / (2 + ...)))
|
||||
|
||||
By expanding this for the first four iterations, we get:
|
||||
1 + 1 / 2 = 3 / 2 = 1.5
|
||||
1 + 1 / (2 + 1 / 2} = 7 / 5 = 1.4
|
||||
1 + 1 / (2 + 1 / (2 + 1 / 2)) = 17 / 12 = 1.41666...
|
||||
1 + 1 / (2 + 1 / (2 + 1 / (2 + 1 / 2))) = 41/ 29 = 1.41379...
|
||||
|
||||
The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion,
|
||||
1393/985, is the first example where the number of digits in the numerator exceeds
|
||||
the number of digits in the denominator.
|
||||
|
||||
In the first one-thousand expansions, how many fractions contain a numerator with
|
||||
more digits than the denominator?
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""
|
||||
returns number of fractions containing a numerator with more digits than
|
||||
the denominator in the first n expansions.
|
||||
>>> solution(14)
|
||||
2
|
||||
>>> solution(100)
|
||||
15
|
||||
>>> solution(10000)
|
||||
1508
|
||||
"""
|
||||
prev_numerator, prev_denominator = 1, 1
|
||||
result = []
|
||||
for i in range(1, n + 1):
|
||||
numerator = prev_numerator + 2 * prev_denominator
|
||||
denominator = prev_numerator + prev_denominator
|
||||
if len(str(numerator)) > len(str(denominator)):
|
||||
result.append(i)
|
||||
prev_numerator = numerator
|
||||
prev_denominator = denominator
|
||||
|
||||
return len(result)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
Loading…
Reference in New Issue
Block a user