mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-31 06:33:44 +00:00
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
d8c0b7c7b3
commit
59d3ceba27
|
@ -14,24 +14,26 @@ To run these tests, use the following command:
|
|||
import numpy as np
|
||||
from ridge_regression import RidgeRegression
|
||||
|
||||
|
||||
def test_feature_scaling():
|
||||
"""
|
||||
Tests the feature_scaling function of RidgeRegression.
|
||||
--------
|
||||
>>> model = RidgeRegression()
|
||||
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
|
||||
>>> X_scaled, mean, std = model.feature_scaling(X)
|
||||
>>> np.round(X_scaled, 2)
|
||||
array([[-1.22, -1.22],
|
||||
[ 0. , 0. ],
|
||||
[ 1.22, 1.22]])
|
||||
>>> np.round(mean, 2)
|
||||
array([2., 3.])
|
||||
>>> np.round(std, 2)
|
||||
array([0.82, 0.82])
|
||||
Tests the feature_scaling function of RidgeRegression.
|
||||
--------
|
||||
>>> model = RidgeRegression()
|
||||
>>> X = np.array([[1, 2], [2, 3], [3, 4]])
|
||||
>>> X_scaled, mean, std = model.feature_scaling(X)
|
||||
>>> np.round(X_scaled, 2)
|
||||
array([[-1.22, -1.22],
|
||||
[ 0. , 0. ],
|
||||
[ 1.22, 1.22]])
|
||||
>>> np.round(mean, 2)
|
||||
array([2., 3.])
|
||||
>>> np.round(std, 2)
|
||||
array([0.82, 0.82])
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def test_fit():
|
||||
"""
|
||||
Tests the fit function of RidgeRegression
|
||||
|
@ -39,19 +41,20 @@ def test_fit():
|
|||
>>> model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
||||
>>> X = np.array([[1], [2], [3]])
|
||||
>>> y = np.array([2, 3, 4])
|
||||
|
||||
|
||||
# Adding a bias term
|
||||
>>> X = np.c_[np.ones(X.shape[0]), X]
|
||||
|
||||
|
||||
# Fit the model
|
||||
>>> model.fit(X, y)
|
||||
|
||||
|
||||
# Check if the weights have been updated
|
||||
>>> np.round(model.theta, decimals=2)
|
||||
array([0. , 0.79])
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def test_predict():
|
||||
"""
|
||||
Tests the predict function of RidgeRegression
|
||||
|
@ -59,13 +62,13 @@ def test_predict():
|
|||
>>> model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
||||
>>> X = np.array([[1], [2], [3]])
|
||||
>>> y = np.array([2, 3, 4])
|
||||
|
||||
|
||||
# Adding a bias term
|
||||
>>> X = np.c_[np.ones(X.shape[0]), X]
|
||||
|
||||
|
||||
# Fit the model
|
||||
>>> model.fit(X, y)
|
||||
|
||||
|
||||
# Predict with the model
|
||||
>>> predictions = model.predict(X)
|
||||
>>> np.round(predictions, decimals=2)
|
||||
|
@ -73,6 +76,7 @@ def test_predict():
|
|||
"""
|
||||
pass
|
||||
|
||||
|
||||
def test_mean_absolute_error():
|
||||
"""
|
||||
Tests the mean_absolute_error function of RidgeRegression
|
||||
|
@ -86,6 +90,8 @@ def test_mean_absolute_error():
|
|||
"""
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
|
||||
doctest.testmod()
|
||||
|
|
Loading…
Reference in New Issue
Block a user