mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-15 02:59:50 +00:00
Delete machine_learning/dbscan.py
This commit is contained in:
parent
d2dbdc1136
commit
59f4a0e046
@ -1,225 +0,0 @@
|
||||
"""
|
||||
|
||||
Author : Gowtham Kamalasekar
|
||||
LinkedIn : https://www.linkedin.com/in/gowtham-kamalasekar/
|
||||
|
||||
"""
|
||||
|
||||
|
||||
class DbScan:
|
||||
"""
|
||||
DBSCAN Algorithm :
|
||||
Density-Based Spatial Clustering Of Applications With Noise
|
||||
Refer this website for more details : https://en.wikipedia.org/wiki/DBSCAN
|
||||
|
||||
Functions:
|
||||
----------
|
||||
__init__() : Constructor that sets minPts, radius and file
|
||||
perform_dbscan() : Invoked by constructor and calculates the core
|
||||
and noise points and returns a dictionary.
|
||||
print_dbscan() : Prints the core and noise points along
|
||||
with stating if the noise are border points or not.
|
||||
plot_dbscan() : Plots the points to show the core and noise point.
|
||||
|
||||
To create a object
|
||||
------------------
|
||||
import dbscan
|
||||
obj = dbscan.DbScan(minpts, radius, file)
|
||||
obj.print_dbscan()
|
||||
obj.plot_dbscan()
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from typing import dict, list
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
minpts: int,
|
||||
radius: int,
|
||||
file: str = (
|
||||
{"x": 3, "y": 7},
|
||||
{"x": 4, "y": 6},
|
||||
{"x": 5, "y": 5},
|
||||
{"x": 6, "y": 4},
|
||||
{"x": 7, "y": 3},
|
||||
{"x": 6, "y": 2},
|
||||
{"x": 7, "y": 2},
|
||||
{"x": 8, "y": 4},
|
||||
{"x": 3, "y": 3},
|
||||
{"x": 2, "y": 6},
|
||||
{"x": 3, "y": 5},
|
||||
{"x": 2, "y": 4},
|
||||
),
|
||||
) -> None:
|
||||
"""
|
||||
Constructor
|
||||
|
||||
Args:
|
||||
-----------
|
||||
minpts (int) : Minimum number of points needed to be
|
||||
within the radius to considered as core
|
||||
radius (int) : The radius from a given core point where
|
||||
other core points can be considered as core
|
||||
file (csv) : CSV file location. Should contain x and y
|
||||
coordinate value for each point.
|
||||
|
||||
Example :
|
||||
minPts = 4
|
||||
radius = 1.9
|
||||
file = 'data_dbscan.csv'
|
||||
|
||||
File Structure of CSV Data:
|
||||
---------------------------
|
||||
_____
|
||||
x | y
|
||||
-----
|
||||
3 | 7
|
||||
4 | 6
|
||||
5 | 5
|
||||
6 | 4
|
||||
7 | 3
|
||||
-----
|
||||
"""
|
||||
self.minpts = minpts
|
||||
self.radius = radius
|
||||
self.file = file
|
||||
self.dict1 = self.perform_dbscan()
|
||||
|
||||
def perform_dbscan(self) -> dict[int, list[int]]:
|
||||
"""
|
||||
Args:
|
||||
-----------
|
||||
None
|
||||
|
||||
Return:
|
||||
--------
|
||||
Dictionary with points and the list
|
||||
of points that lie in its radius
|
||||
|
||||
>>> result = DbScan(4, 1.9).perform_dbscan()
|
||||
>>> for key in sorted(result):
|
||||
... print(key, sorted(result[key]))
|
||||
1 [1, 2, 10]
|
||||
2 [1, 2, 3, 11]
|
||||
3 [2, 3, 4]
|
||||
4 [3, 4, 5]
|
||||
5 [4, 5, 6, 7, 8]
|
||||
6 [5, 6, 7]
|
||||
7 [5, 6, 7]
|
||||
8 [5, 8]
|
||||
9 [9, 12]
|
||||
10 [1, 10, 11]
|
||||
11 [2, 10, 11, 12]
|
||||
12 [9, 11, 12]
|
||||
|
||||
"""
|
||||
if type(self.file) is str:
|
||||
data = pd.read_csv(self.file)
|
||||
else:
|
||||
data = pd.DataFrame(list(self.file))
|
||||
e = self.radius
|
||||
dict1 = {}
|
||||
for i in range(len(data)):
|
||||
for j in range(len(data)):
|
||||
dist = math.sqrt(
|
||||
pow(data["x"][j] - data["x"][i], 2)
|
||||
+ pow(data["y"][j] - data["y"][i], 2)
|
||||
)
|
||||
if dist < e:
|
||||
if i + 1 in dict1:
|
||||
dict1[i + 1].append(j + 1)
|
||||
else:
|
||||
dict1[i + 1] = [
|
||||
j + 1,
|
||||
]
|
||||
return dict1
|
||||
|
||||
def print_dbscan(self) -> None:
|
||||
"""
|
||||
Outputs:
|
||||
--------
|
||||
Prints each point and if it is a core or a noise (w/ border)
|
||||
|
||||
>>> DbScan(4,1.9).print_dbscan()
|
||||
1 [1, 2, 10] ---> Noise ---> Border
|
||||
2 [1, 2, 3, 11] ---> Core
|
||||
3 [2, 3, 4] ---> Noise ---> Border
|
||||
4 [3, 4, 5] ---> Noise ---> Border
|
||||
5 [4, 5, 6, 7, 8] ---> Core
|
||||
6 [5, 6, 7] ---> Noise ---> Border
|
||||
7 [5, 6, 7] ---> Noise ---> Border
|
||||
8 [5, 8] ---> Noise ---> Border
|
||||
9 [9, 12] ---> Noise
|
||||
10 [1, 10, 11] ---> Noise ---> Border
|
||||
11 [2, 10, 11, 12] ---> Core
|
||||
12 [9, 11, 12] ---> Noise ---> Border
|
||||
"""
|
||||
for i in self.dict1:
|
||||
print(i, " ", self.dict1[i], end=" ---> ")
|
||||
if len(self.dict1[i]) >= self.minpts:
|
||||
print("Core")
|
||||
else:
|
||||
for j in self.dict1:
|
||||
if (
|
||||
i != j
|
||||
and len(self.dict1[j]) >= self.minpts
|
||||
and i in self.dict1[j]
|
||||
):
|
||||
print("Noise ---> Border")
|
||||
break
|
||||
else:
|
||||
print("Noise")
|
||||
|
||||
def plot_dbscan(self) -> None:
|
||||
"""
|
||||
Output:
|
||||
-------
|
||||
A matplotlib plot that show points as core and noise along
|
||||
with the circle that lie within it.
|
||||
|
||||
>>> DbScan(4,1.9).plot_dbscan()
|
||||
Plotted Successfully
|
||||
"""
|
||||
if type(self.file) is str:
|
||||
data = pd.read_csv(self.file)
|
||||
else:
|
||||
data = pd.DataFrame(list(self.file))
|
||||
e = self.radius
|
||||
for i in self.dict1:
|
||||
if len(self.dict1[i]) >= self.minpts:
|
||||
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="red")
|
||||
circle = plt.Circle(
|
||||
(data["x"][i - 1], data["y"][i - 1]), e, color="blue", fill=False
|
||||
)
|
||||
plt.gca().add_artist(circle)
|
||||
plt.text(
|
||||
data["x"][i - 1],
|
||||
data["y"][i - 1],
|
||||
"P" + str(i),
|
||||
ha="center",
|
||||
va="bottom",
|
||||
)
|
||||
else:
|
||||
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="green")
|
||||
plt.text(
|
||||
data["x"][i - 1],
|
||||
data["y"][i - 1],
|
||||
"P" + str(i),
|
||||
ha="center",
|
||||
va="bottom",
|
||||
)
|
||||
plt.xlabel("X")
|
||||
plt.ylabel("Y")
|
||||
plt.title("DBSCAN Clustering")
|
||||
plt.legend(["Core", "Noise"])
|
||||
plt.show()
|
||||
print("Plotted Successfully")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
x
Reference in New Issue
Block a user