Refactor LSTM network implementation and improve code readability

This commit is contained in:
“Shashank 2024-10-15 11:37:28 +05:30
parent 21dab0f1c1
commit 5a00ca63fc

View File

@ -7,42 +7,46 @@ Detail: Total 3 layers neural network
* Output layer
Author: Shashank Tyagi
Github: LEVII007
link : https://www.kaggle.com/code/navjindervirdee/lstm-neural-network-from-scratch
Date: [Current Date]
"""
##### Explanation #####
# This script implements a Long Short-Term Memory (LSTM) network to learn
# and predict sequences of characters.
#### Explanation #####
# This script implements a Long Short-Term Memory (LSTM)
# network to learn and predict sequences of characters.
# It uses numpy for numerical operations and tqdm for progress visualization.
# The data is a paragraph about LSTM, converted to lowercase and split into
# characters. Each character is one-hot encoded for training.
# The data is a paragraph about LSTM, converted to
# lowercase and split into characters.
# Each character is one-hot encoded for training.
# The LSTM class initializes weights and biases for the forget, input, candidate,
# and output gates. It also initializes weights and biases for the final output layer.
# The LSTM class initializes weights and biases for the
# forget, input, candidate, and output gates.
# It also initializes weights and biases for the final output layer.
# The forward method performs forward propagation through the LSTM network,
# computing hidden and cell states. It uses sigmoid and tanh activation
# functions for the gates and cell states.
# The forward method performs forward propagation
# through the LSTM network, computing hidden and cell states.
# It uses sigmoid and tanh activation functions for the gates and cell states.
# The backward method performs backpropagation through time, computing gradients
# for the weights and biases. It updates the weights and biases using
# the computed gradients and the learning rate.
# The backward method performs backpropagation
# through time, computing gradients for the weights and biases.
# It updates the weights and biases using the
# computed gradients and the learning rate.
# The train method trains the LSTM network on the input data for a specified
# number of epochs. It uses one-hot encoded inputs and computes errors
# using the softmax function.
# The train method trains the LSTM network on
# the input data for a specified number of epochs.
# It uses one-hot encoded inputs and computes
# errors using the softmax function.
# The test method evaluates the trained LSTM network on the input data,
# computing accuracy based on predictions.
# The test method evaluates the trained LSTM
# network on the input data, computing accuracy based on predictions.
# The script initializes the LSTM network with specified hyperparameters
# and trains it on the input data. Finally, it tests the trained network
# and prints the accuracy of the predictions.
# The script initializes the LSTM network with
# specified hyperparameters and trains it on the input data.
# Finally, it tests the trained network and prints the accuracy of the predictions.
##### Imports #####
from tqdm import tqdm
import numpy as np
from tqdm import tqdm
class LSTM:
@ -68,7 +72,7 @@ class LSTM:
print(f"Data size: {self.data_size}, Char Size: {self.char_size}")
self.char_to_idx = {c: i for i, c in enumerate(self.chars)}
self.idx_to_char = {i: c for i, c in enumerate(self.chars)}
self.idx_to_char = dict(enumerate(self.chars))
self.train_X, self.train_y = self.data[:-1], self.data[1:]
@ -90,30 +94,42 @@ class LSTM:
"""
Initialize the weights and biases for the LSTM network.
"""
self.wf = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
rng = np.random.default_rng()
self.wf = self.init_weights(
self.char_size + self.hidden_dim, self.hidden_dim, rng
)
self.bf = np.zeros((self.hidden_dim, 1))
self.wi = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.wi = self.init_weights(
self.char_size + self.hidden_dim, self.hidden_dim, rng
)
self.bi = np.zeros((self.hidden_dim, 1))
self.wc = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.wc = self.init_weights(
self.char_size + self.hidden_dim, self.hidden_dim, rng
)
self.bc = np.zeros((self.hidden_dim, 1))
self.wo = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim)
self.wo = self.init_weights(
self.char_size + self.hidden_dim, self.hidden_dim, rng
)
self.bo = np.zeros((self.hidden_dim, 1))
self.wy = self.init_weights(self.hidden_dim, self.char_size)
self.wy = self.init_weights(self.hidden_dim, self.char_size, rng)
self.by = np.zeros((self.char_size, 1))
def init_weights(self, input_dim: int, output_dim: int) -> np.ndarray:
def init_weights(
self, input_dim: int, output_dim: int, rng: np.random.Generator
) -> np.ndarray:
"""
Initialize weights with random values.
:param input_dim: The input dimension.
:param output_dim: The output dimension.
:param rng: The random number generator.
:return: A matrix of initialized weights.
"""
return np.random.uniform(-1, 1, (output_dim, input_dim)) * np.sqrt(
return rng.uniform(-1, 1, (output_dim, input_dim)) * np.sqrt(
6 / (input_dim + output_dim)
)
@ -280,79 +296,95 @@ class LSTM:
d_wc += np.dot(d_c, inputs[t].T)
d_bc += d_c
# Update the next hidden and cell state errors
dh_next = (
# Concatenated Input Error (Sum of Error at Each Gate!)
d_z = (
np.dot(self.wf.T, d_f)
+ np.dot(self.wi.T, d_i)
+ np.dot(self.wo.T, d_o)
+ np.dot(self.wc.T, d_c)
+ np.dot(self.wo.T, d_o)
)
dc_next = d_cs * self.forget_gates[t]
# Apply gradients to weights and biases
for param, grad in zip(
[self.wf, self.wi, self.wc, self.wo, self.wy],
[d_wf, d_wi, d_wc, d_wo, d_wy],
):
param -= self.lr * grad
# Error of Hidden State and Cell State at Next Time Step
dh_next = d_z[: self.hidden_dim, :]
dc_next = self.forget_gates[t] * d_cs
for param, grad in zip(
[self.bf, self.bi, self.bc, self.bo, self.by],
[d_bf, d_bi, d_bc, d_bo, d_by],
):
param -= self.lr * grad
for d_ in (d_wf, d_bf, d_wi, d_bi, d_wc, d_bc, d_wo, d_bo, d_wy, d_by):
np.clip(d_, -1, 1, out=d_)
self.wf += d_wf * self.lr
self.bf += d_bf * self.lr
self.wi += d_wi * self.lr
self.bi += d_bi * self.lr
self.wc += d_wc * self.lr
self.bc += d_bc * self.lr
self.wo += d_wo * self.lr
self.bo += d_bo * self.lr
self.wy += d_wy * self.lr
self.by += d_by * self.lr
def train(self) -> None:
"""
Train the LSTM network on the input data for a specified number of epochs.
Train the LSTM network on the input data.
"""
for epoch in tqdm(range(self.epochs)):
inputs = [self.one_hot_encode(char) for char in self.train_X]
targets = [self.one_hot_encode(char) for char in self.train_y]
inputs = [self.one_hot_encode(char) for char in self.train_X]
# Forward pass
outputs = self.forward(inputs)
for _ in tqdm(range(self.epochs)):
predictions = self.forward(inputs)
# Compute error at each time step
errors = [output - target for output, target in zip(outputs, targets)]
errors = []
for t in range(len(predictions)):
errors.append(-self.softmax(predictions[t]))
errors[-1][self.char_to_idx[self.train_y[t]]] += 1
# Backward pass and weight updates
self.backward(errors, inputs)
def predict(self, inputs: list) -> str:
"""
Predict the next character in the sequence.
:param inputs: The input data as a list of one-hot encoded vectors.
:return: The predicted character.
"""
output = self.forward(inputs)[-1]
return self.idx_to_char[np.argmax(self.softmax(output))]
self.backward(errors, self.concat_inputs)
def test(self) -> None:
"""
Test the LSTM network on the input data and compute accuracy.
Test the trained LSTM network on the input data and print the accuracy.
"""
inputs = [self.one_hot_encode(char) for char in self.train_X]
correct_predictions = sum(
self.idx_to_char[np.argmax(self.softmax(output))] == target
for output, target in zip(self.forward(inputs), self.train_y)
accuracy = 0
probabilities = self.forward(
[self.one_hot_encode(char) for char in self.train_X]
)
accuracy = (correct_predictions / len(self.train_y)) * 100
print(f"Accuracy: {accuracy:.2f}%")
output = ""
for t in range(len(self.train_y)):
prediction = self.idx_to_char[
np.random.choice(
range(self.char_size), p=self.softmax(probabilities[t].reshape(-1))
)
]
output += prediction
if prediction == self.train_y[t]:
accuracy += 1
print(f"Ground Truth:\n{self.train_y}\n")
print(f"Predictions:\n{output}\n")
print(f"Accuracy: {round(accuracy * 100 / len(self.train_X), 2)}%")
if __name__ == "__main__":
# Define the input data and hyperparameters
data = "LSTM Neural Networks are designed to handle sequences of data.This is just rantom test data"
# hidden_dim = 50
# epochs = 1000
# lr = 0.01
data = """Long Short-Term Memory (LSTM) networks are a type
of recurrent neural network (RNN) capable of learning "
"order dependence in sequence prediction problems.
This behavior is required in complex problem domains like "
"machine translation, speech recognition, and more.
iter and Schmidhuber in 1997, and were refined and "
"popularized by many people in following work."""
# # Initialize and train the LSTM network
# lstm = LSTM(data, hidden_dim, epochs, lr)
# lstm.train()
lstm = LSTM(data=data, hidden_dim=25, epochs=1000, lr=0.05)
# # Test the LSTM network and compute accuracy
# lstm.test()
##### Training #####
lstm.train()
##### Testing #####
lstm.test()
# testing can be done by uncommenting the above lines of code.