diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index 591fd7819..3d4cc4084 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -15,8 +15,8 @@ repos: hooks: - id: auto-walrus - - repo: https://github.com/charliermarsh/ruff-pre-commit - rev: v0.0.272 + - repo: https://github.com/astral-sh/ruff-pre-commit + rev: v0.0.274 hooks: - id: ruff diff --git a/data_structures/queue/double_ended_queue.py b/data_structures/queue/double_ended_queue.py index 637b7f62f..2472371b4 100644 --- a/data_structures/queue/double_ended_queue.py +++ b/data_structures/queue/double_ended_queue.py @@ -32,7 +32,7 @@ class Deque: the number of nodes """ - __slots__ = ["_front", "_back", "_len"] + __slots__ = ("_front", "_back", "_len") @dataclass class _Node: @@ -54,7 +54,7 @@ class Deque: the current node of the iteration. """ - __slots__ = ["_cur"] + __slots__ = "_cur" def __init__(self, cur: Deque._Node | None) -> None: self._cur = cur diff --git a/graphs/dijkstra_binary_grid.py b/graphs/dijkstra_binary_grid.py new file mode 100644 index 000000000..c23d82343 --- /dev/null +++ b/graphs/dijkstra_binary_grid.py @@ -0,0 +1,89 @@ +""" +This script implements the Dijkstra algorithm on a binary grid. +The grid consists of 0s and 1s, where 1 represents +a walkable node and 0 represents an obstacle. +The algorithm finds the shortest path from a start node to a destination node. +Diagonal movement can be allowed or disallowed. +""" + +from heapq import heappop, heappush + +import numpy as np + + +def dijkstra( + grid: np.ndarray, + source: tuple[int, int], + destination: tuple[int, int], + allow_diagonal: bool, +) -> tuple[float | int, list[tuple[int, int]]]: + """ + Implements Dijkstra's algorithm on a binary grid. + + Args: + grid (np.ndarray): A 2D numpy array representing the grid. + 1 represents a walkable node and 0 represents an obstacle. + source (Tuple[int, int]): A tuple representing the start node. + destination (Tuple[int, int]): A tuple representing the + destination node. + allow_diagonal (bool): A boolean determining whether + diagonal movements are allowed. + + Returns: + Tuple[Union[float, int], List[Tuple[int, int]]]: + The shortest distance from the start node to the destination node + and the shortest path as a list of nodes. + + >>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), False) + (4.0, [(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)]) + + >>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), True) + (2.0, [(0, 0), (1, 1), (2, 2)]) + + >>> dijkstra(np.array([[1, 1, 1], [0, 0, 1], [0, 1, 1]]), (0, 0), (2, 2), False) + (4.0, [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)]) + """ + rows, cols = grid.shape + dx = [-1, 1, 0, 0] + dy = [0, 0, -1, 1] + if allow_diagonal: + dx += [-1, -1, 1, 1] + dy += [-1, 1, -1, 1] + + queue, visited = [(0, source)], set() + matrix = np.full((rows, cols), np.inf) + matrix[source] = 0 + predecessors = np.empty((rows, cols), dtype=object) + predecessors[source] = None + + while queue: + (dist, (x, y)) = heappop(queue) + if (x, y) in visited: + continue + visited.add((x, y)) + + if (x, y) == destination: + path = [] + while (x, y) != source: + path.append((x, y)) + x, y = predecessors[x, y] + path.append(source) # add the source manually + path.reverse() + return matrix[destination], path + + for i in range(len(dx)): + nx, ny = x + dx[i], y + dy[i] + if 0 <= nx < rows and 0 <= ny < cols: + next_node = grid[nx][ny] + if next_node == 1 and matrix[nx, ny] > dist + 1: + heappush(queue, (dist + 1, (nx, ny))) + matrix[nx, ny] = dist + 1 + predecessors[nx, ny] = (x, y) + + return np.inf, [] + + +if __name__ == "__main__": + import doctest + + doctest.testmod() diff --git a/maths/least_common_multiple.py b/maths/least_common_multiple.py index 621d93720..10cc63ac7 100644 --- a/maths/least_common_multiple.py +++ b/maths/least_common_multiple.py @@ -67,7 +67,7 @@ def benchmark(): class TestLeastCommonMultiple(unittest.TestCase): - test_inputs = [ + test_inputs = ( (10, 20), (13, 15), (4, 31), @@ -77,8 +77,8 @@ class TestLeastCommonMultiple(unittest.TestCase): (12, 25), (10, 25), (6, 9), - ] - expected_results = [20, 195, 124, 210, 1462, 60, 300, 50, 18] + ) + expected_results = (20, 195, 124, 210, 1462, 60, 300, 50, 18) def test_lcm_function(self): for i, (first_num, second_num) in enumerate(self.test_inputs): diff --git a/project_euler/problem_054/sol1.py b/project_euler/problem_054/sol1.py index 74409f32c..86dfa5edd 100644 --- a/project_euler/problem_054/sol1.py +++ b/project_euler/problem_054/sol1.py @@ -47,18 +47,18 @@ import os class PokerHand: """Create an object representing a Poker Hand based on an input of a - string which represents the best 5 card combination from the player's hand + string which represents the best 5-card combination from the player's hand and board cards. Attributes: (read-only) - hand: string representing the hand consisting of five cards + hand: a string representing the hand consisting of five cards Methods: compare_with(opponent): takes in player's hand (self) and opponent's hand (opponent) and compares both hands according to the rules of Texas Hold'em. Returns one of 3 strings (Win, Loss, Tie) based on whether - player's hand is better than opponent's hand. + player's hand is better than the opponent's hand. hand_name(): Returns a string made up of two parts: hand name and high card. @@ -66,11 +66,11 @@ class PokerHand: Supported operators: Rich comparison operators: <, >, <=, >=, ==, != - Supported builtin methods and functions: + Supported built-in methods and functions: list.sort(), sorted() """ - _HAND_NAME = [ + _HAND_NAME = ( "High card", "One pair", "Two pairs", @@ -81,10 +81,10 @@ class PokerHand: "Four of a kind", "Straight flush", "Royal flush", - ] + ) - _CARD_NAME = [ - "", # placeholder as lists are zero indexed + _CARD_NAME = ( + "", # placeholder as tuples are zero-indexed "One", "Two", "Three", @@ -99,7 +99,7 @@ class PokerHand: "Queen", "King", "Ace", - ] + ) def __init__(self, hand: str) -> None: """ diff --git a/pyproject.toml b/pyproject.toml index 1dcce044a..4f21a9519 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -103,6 +103,7 @@ max-complexity = 17 # default: 10 "machine_learning/linear_discriminant_analysis.py" = ["ARG005"] "machine_learning/sequential_minimum_optimization.py" = ["SIM115"] "matrix/sherman_morrison.py" = ["SIM103", "SIM114"] +"other/l*u_cache.py" = ["RUF012"] "physics/newtons_second_law_of_motion.py" = ["BLE001"] "project_euler/problem_099/sol1.py" = ["SIM115"] "sorts/external_sort.py" = ["SIM115"]