mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
EHN: A divide-and-conquer, and brute-force algorithms for array inversions co… (#1133)
* divide and conquer and brute force algorithms for array-inversions counting * divide and conquer and brute force algorithms for array-inversions counting * divide and conquer and brute force algorithms for array-inversions counting
This commit is contained in:
parent
3e69733e44
commit
5bdcd4836c
173
divide_and_conquer/inversions.py
Normal file
173
divide_and_conquer/inversions.py
Normal file
|
@ -0,0 +1,173 @@
|
|||
from __future__ import print_function, absolute_import, division
|
||||
|
||||
"""
|
||||
Given an array-like data structure A[1..n], how many pairs
|
||||
(i, j) for all 1 <= i < j <= n such that A[i] > A[j]? These pairs are
|
||||
called inversions. Counting the number of such inversions in an array-like
|
||||
object is the important. Among other things, counting inversions can help
|
||||
us determine how close a given array is to being sorted
|
||||
|
||||
In this implementation, I provide two algorithms, a divide-and-conquer
|
||||
algorithm which runs in nlogn and the brute-force n^2 algorithm.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def count_inversions_bf(arr):
|
||||
"""
|
||||
Counts the number of inversions using a a naive brute-force algorithm
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr: arr: array-like, the list containing the items for which the number
|
||||
of inversions is desired. The elements of `arr` must be comparable.
|
||||
|
||||
Returns
|
||||
-------
|
||||
num_inversions: The total number of inversions in `arr`
|
||||
|
||||
Examples
|
||||
---------
|
||||
|
||||
>>> count_inversions_bf([1, 4, 2, 4, 1])
|
||||
4
|
||||
>>> count_inversions_bf([1, 1, 2, 4, 4])
|
||||
0
|
||||
>>> count_inversions_bf([])
|
||||
0
|
||||
"""
|
||||
|
||||
num_inversions = 0
|
||||
n = len(arr)
|
||||
|
||||
for i in range(n-1):
|
||||
for j in range(i + 1, n):
|
||||
if arr[i] > arr[j]:
|
||||
num_inversions += 1
|
||||
|
||||
return num_inversions
|
||||
|
||||
|
||||
def count_inversions_recursive(arr):
|
||||
"""
|
||||
Counts the number of inversions using a divide-and-conquer algorithm
|
||||
|
||||
Parameters
|
||||
-----------
|
||||
arr: array-like, the list containing the items for which the number
|
||||
of inversions is desired. The elements of `arr` must be comparable.
|
||||
|
||||
Returns
|
||||
-------
|
||||
C: a sorted copy of `arr`.
|
||||
num_inversions: int, the total number of inversions in 'arr'
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> count_inversions_recursive([1, 4, 2, 4, 1])
|
||||
([1, 1, 2, 4, 4], 4)
|
||||
>>> count_inversions_recursive([1, 1, 2, 4, 4])
|
||||
([1, 1, 2, 4, 4], 0)
|
||||
>>> count_inversions_recursive([])
|
||||
([], 0)
|
||||
"""
|
||||
if len(arr) <= 1:
|
||||
return arr, 0
|
||||
else:
|
||||
mid = len(arr)//2
|
||||
P = arr[0:mid]
|
||||
Q = arr[mid:]
|
||||
|
||||
A, inversion_p = count_inversions_recursive(P)
|
||||
B, inversions_q = count_inversions_recursive(Q)
|
||||
C, cross_inversions = _count_cross_inversions(A, B)
|
||||
|
||||
num_inversions = inversion_p + inversions_q + cross_inversions
|
||||
return C, num_inversions
|
||||
|
||||
|
||||
def _count_cross_inversions(P, Q):
|
||||
"""
|
||||
Counts the inversions across two sorted arrays.
|
||||
And combine the two arrays into one sorted array
|
||||
|
||||
For all 1<= i<=len(P) and for all 1 <= j <= len(Q),
|
||||
if P[i] > Q[j], then (i, j) is a cross inversion
|
||||
|
||||
Parameters
|
||||
----------
|
||||
P: array-like, sorted in non-decreasing order
|
||||
Q: array-like, sorted in non-decreasing order
|
||||
|
||||
Returns
|
||||
------
|
||||
R: array-like, a sorted array of the elements of `P` and `Q`
|
||||
num_inversion: int, the number of inversions across `P` and `Q`
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> _count_cross_inversions([1, 2, 3], [0, 2, 5])
|
||||
([0, 1, 2, 2, 3, 5], 4)
|
||||
>>> _count_cross_inversions([1, 2, 3], [3, 4, 5])
|
||||
([1, 2, 3, 3, 4, 5], 0)
|
||||
"""
|
||||
|
||||
R = []
|
||||
i = j = num_inversion = 0
|
||||
while i < len(P) and j < len(Q):
|
||||
if P[i] > Q[j]:
|
||||
# if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P)
|
||||
# These are all inversions. The claim emerges from the
|
||||
# property that P is sorted.
|
||||
num_inversion += (len(P) - i)
|
||||
R.append(Q[j])
|
||||
j += 1
|
||||
else:
|
||||
R.append(P[i])
|
||||
i += 1
|
||||
|
||||
if i < len(P):
|
||||
R.extend(P[i:])
|
||||
else:
|
||||
R.extend(Q[j:])
|
||||
|
||||
return R, num_inversion
|
||||
|
||||
|
||||
def main():
|
||||
arr_1 = [10, 2, 1, 5, 5, 2, 11]
|
||||
|
||||
# this arr has 8 inversions:
|
||||
# (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2)
|
||||
|
||||
num_inversions_bf = count_inversions_bf(arr_1)
|
||||
_, num_inversions_recursive = count_inversions_recursive(arr_1)
|
||||
|
||||
assert num_inversions_bf == num_inversions_recursive == 8
|
||||
|
||||
print("number of inversions = ", num_inversions_bf)
|
||||
|
||||
# testing an array with zero inversion (a sorted arr_1)
|
||||
|
||||
arr_1.sort()
|
||||
num_inversions_bf = count_inversions_bf(arr_1)
|
||||
_, num_inversions_recursive = count_inversions_recursive(arr_1)
|
||||
|
||||
assert num_inversions_bf == num_inversions_recursive == 0
|
||||
print("number of inversions = ", num_inversions_bf)
|
||||
|
||||
# an empty list should also have zero inversions
|
||||
arr_1 = []
|
||||
num_inversions_bf = count_inversions_bf(arr_1)
|
||||
_, num_inversions_recursive = count_inversions_recursive(arr_1)
|
||||
|
||||
assert num_inversions_bf == num_inversions_recursive == 0
|
||||
print("number of inversions = ", num_inversions_bf)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user