diff --git a/neural_network/lstm.py b/neural_network/lstm.py index b24894e78..9abd96053 100644 --- a/neural_network/lstm.py +++ b/neural_network/lstm.py @@ -97,32 +97,22 @@ class LSTM: Initialize the weights and biases for the LSTM network. """ - self.wf = self.init_weights( - self.char_size + self.hidden_dim, self.hidden_dim - ) + self.wf = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim) self.bf = np.zeros((self.hidden_dim, 1)) - self.wi = self.init_weights( - self.char_size + self.hidden_dim, self.hidden_dim - ) + self.wi = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim) self.bi = np.zeros((self.hidden_dim, 1)) - self.wc = self.init_weights( - self.char_size + self.hidden_dim, self.hidden_dim - ) + self.wc = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim) self.bc = np.zeros((self.hidden_dim, 1)) - self.wo = self.init_weights( - self.char_size + self.hidden_dim, self.hidden_dim - ) + self.wo = self.init_weights(self.char_size + self.hidden_dim, self.hidden_dim) self.bo = np.zeros((self.hidden_dim, 1)) self.wy = self.init_weights(self.hidden_dim, self.char_size) self.by = np.zeros((self.char_size, 1)) - def init_weights( - self, input_dim: int, output_dim: int - ) -> np.ndarray: + def init_weights(self, input_dim: int, output_dim: int) -> np.ndarray: """ Initialize weights with random values. @@ -367,7 +357,6 @@ class LSTM: print(f"Accuracy: {round(accuracy * 100 / len(self.train_X), 2)}%") - if __name__ == "__main__": data = """Long Short-Term Memory (LSTM) networks are a type of recurrent neural network (RNN) capable of learning "