mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Create largest_square_area_in_matrix.py (#7673)
* Create largest_square_area_in_matrix.py * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update matrix/largest_square_area_in_matrix.py Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> * Update matrix/largest_square_area_in_matrix.py Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update largest_square_area_in_matrix.py Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com>
This commit is contained in:
parent
8fd06efe22
commit
5c8a939c5a
191
matrix/largest_square_area_in_matrix.py
Normal file
191
matrix/largest_square_area_in_matrix.py
Normal file
|
@ -0,0 +1,191 @@
|
|||
"""
|
||||
Question:
|
||||
Given a binary matrix mat of size n * m, find out the maximum size square
|
||||
sub-matrix with all 1s.
|
||||
|
||||
---
|
||||
Example 1:
|
||||
|
||||
Input:
|
||||
n = 2, m = 2
|
||||
mat = [[1, 1],
|
||||
[1, 1]]
|
||||
|
||||
Output:
|
||||
2
|
||||
|
||||
Explanation: The maximum size of the square
|
||||
sub-matrix is 2. The matrix itself is the
|
||||
maximum sized sub-matrix in this case.
|
||||
---
|
||||
Example 2
|
||||
|
||||
Input:
|
||||
n = 2, m = 2
|
||||
mat = [[0, 0],
|
||||
[0, 0]]
|
||||
Output: 0
|
||||
|
||||
Explanation: There is no 1 in the matrix.
|
||||
|
||||
|
||||
Approach:
|
||||
We initialize another matrix (dp) with the same dimensions
|
||||
as the original one initialized with all 0’s.
|
||||
|
||||
dp_array(i,j) represents the side length of the maximum square whose
|
||||
bottom right corner is the cell with index (i,j) in the original matrix.
|
||||
|
||||
Starting from index (0,0), for every 1 found in the original matrix,
|
||||
we update the value of the current element as
|
||||
|
||||
dp_array(i,j)=dp_array(dp(i−1,j),dp_array(i−1,j−1),dp_array(i,j−1)) + 1.
|
||||
"""
|
||||
|
||||
|
||||
def largest_square_area_in_matrix_top_down_approch(
|
||||
rows: int, cols: int, mat: list[list[int]]
|
||||
) -> int:
|
||||
"""
|
||||
Function updates the largest_square_area[0], if recursive call found
|
||||
square with maximum area.
|
||||
|
||||
We aren't using dp_array here, so the time complexity would be exponential.
|
||||
|
||||
>>> largest_square_area_in_matrix_top_down_approch(2, 2, [[1,1], [1,1]])
|
||||
2
|
||||
>>> largest_square_area_in_matrix_top_down_approch(2, 2, [[0,0], [0,0]])
|
||||
0
|
||||
"""
|
||||
|
||||
def update_area_of_max_square(row: int, col: int) -> int:
|
||||
|
||||
# BASE CASE
|
||||
if row >= rows or col >= cols:
|
||||
return 0
|
||||
|
||||
right = update_area_of_max_square(row, col + 1)
|
||||
diagonal = update_area_of_max_square(row + 1, col + 1)
|
||||
down = update_area_of_max_square(row + 1, col)
|
||||
|
||||
if mat[row][col]:
|
||||
sub_problem_sol = 1 + min([right, diagonal, down])
|
||||
largest_square_area[0] = max(largest_square_area[0], sub_problem_sol)
|
||||
return sub_problem_sol
|
||||
else:
|
||||
return 0
|
||||
|
||||
largest_square_area = [0]
|
||||
update_area_of_max_square(0, 0)
|
||||
return largest_square_area[0]
|
||||
|
||||
|
||||
def largest_square_area_in_matrix_top_down_approch_with_dp(
|
||||
rows: int, cols: int, mat: list[list[int]]
|
||||
) -> int:
|
||||
"""
|
||||
Function updates the largest_square_area[0], if recursive call found
|
||||
square with maximum area.
|
||||
|
||||
We are using dp_array here, so the time complexity would be O(N^2).
|
||||
|
||||
>>> largest_square_area_in_matrix_top_down_approch_with_dp(2, 2, [[1,1], [1,1]])
|
||||
2
|
||||
>>> largest_square_area_in_matrix_top_down_approch_with_dp(2, 2, [[0,0], [0,0]])
|
||||
0
|
||||
"""
|
||||
|
||||
def update_area_of_max_square_using_dp_array(
|
||||
row: int, col: int, dp_array: list[list[int]]
|
||||
) -> int:
|
||||
if row >= rows or col >= cols:
|
||||
return 0
|
||||
if dp_array[row][col] != -1:
|
||||
return dp_array[row][col]
|
||||
|
||||
right = update_area_of_max_square_using_dp_array(row, col + 1, dp_array)
|
||||
diagonal = update_area_of_max_square_using_dp_array(row + 1, col + 1, dp_array)
|
||||
down = update_area_of_max_square_using_dp_array(row + 1, col, dp_array)
|
||||
|
||||
if mat[row][col]:
|
||||
sub_problem_sol = 1 + min([right, diagonal, down])
|
||||
largest_square_area[0] = max(largest_square_area[0], sub_problem_sol)
|
||||
dp_array[row][col] = sub_problem_sol
|
||||
return sub_problem_sol
|
||||
else:
|
||||
return 0
|
||||
|
||||
largest_square_area = [0]
|
||||
dp_array = [[-1] * cols for _ in range(rows)]
|
||||
update_area_of_max_square_using_dp_array(0, 0, dp_array)
|
||||
|
||||
return largest_square_area[0]
|
||||
|
||||
|
||||
def largest_square_area_in_matrix_bottom_up(
|
||||
rows: int, cols: int, mat: list[list[int]]
|
||||
) -> int:
|
||||
"""
|
||||
Function updates the largest_square_area, using bottom up approach.
|
||||
|
||||
>>> largest_square_area_in_matrix_bottom_up(2, 2, [[1,1], [1,1]])
|
||||
2
|
||||
>>> largest_square_area_in_matrix_bottom_up(2, 2, [[0,0], [0,0]])
|
||||
0
|
||||
|
||||
"""
|
||||
dp_array = [[0] * (cols + 1) for _ in range(rows + 1)]
|
||||
largest_square_area = 0
|
||||
for row in range(rows - 1, -1, -1):
|
||||
for col in range(cols - 1, -1, -1):
|
||||
|
||||
right = dp_array[row][col + 1]
|
||||
diagonal = dp_array[row + 1][col + 1]
|
||||
bottom = dp_array[row + 1][col]
|
||||
|
||||
if mat[row][col] == 1:
|
||||
dp_array[row][col] = 1 + min(right, diagonal, bottom)
|
||||
largest_square_area = max(dp_array[row][col], largest_square_area)
|
||||
else:
|
||||
dp_array[row][col] = 0
|
||||
|
||||
return largest_square_area
|
||||
|
||||
|
||||
def largest_square_area_in_matrix_bottom_up_space_optimization(
|
||||
rows: int, cols: int, mat: list[list[int]]
|
||||
) -> int:
|
||||
"""
|
||||
Function updates the largest_square_area, using bottom up
|
||||
approach. with space optimization.
|
||||
|
||||
>>> largest_square_area_in_matrix_bottom_up_space_optimization(2, 2, [[1,1], [1,1]])
|
||||
2
|
||||
>>> largest_square_area_in_matrix_bottom_up_space_optimization(2, 2, [[0,0], [0,0]])
|
||||
0
|
||||
"""
|
||||
current_row = [0] * (cols + 1)
|
||||
next_row = [0] * (cols + 1)
|
||||
largest_square_area = 0
|
||||
for row in range(rows - 1, -1, -1):
|
||||
for col in range(cols - 1, -1, -1):
|
||||
|
||||
right = current_row[col + 1]
|
||||
diagonal = next_row[col + 1]
|
||||
bottom = next_row[col]
|
||||
|
||||
if mat[row][col] == 1:
|
||||
current_row[col] = 1 + min(right, diagonal, bottom)
|
||||
largest_square_area = max(current_row[col], largest_square_area)
|
||||
else:
|
||||
current_row[col] = 0
|
||||
next_row = current_row
|
||||
|
||||
return largest_square_area
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
|
Loading…
Reference in New Issue
Block a user