GitHub Action formats our code with psf/black (#1569)

* GitHub Action formats our code with psf/black

@poyea Your review please.

* fixup! Format Python code with psf/black push
This commit is contained in:
Christian Clauss 2019-11-14 19:59:43 +01:00 committed by GitHub
parent 52cf668617
commit 5df8aec66c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 523 additions and 400 deletions

View File

@ -1,34 +1,24 @@
# GitHub Action that uses Black to reformat the Python code in an incoming pull request.
# If all Python code in the pull request is complient with Black then this Action does nothing.
# Othewrwise, Black is run and its changes are committed back to the incoming pull request.
# GitHub Action that uses Black to reformat Python code (if needed) when doing a git push.
# If all Python code in the repo is complient with Black then this Action does nothing.
# Otherwise, Black is run and its changes are committed to the repo.
# https://github.com/cclauss/autoblack
name: autoblack
on: [pull_request]
name: autoblack_push
on: [push]
jobs:
build:
runs-on: ubuntu-latest
strategy:
max-parallel: 1
matrix:
python-version: [3.7]
steps:
- uses: actions/checkout@v1
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v1
with:
python-version: ${{ matrix.python-version }}
- name: Install psf/black
run: pip install black
- name: Run black --check .
run: black --check .
- name: If needed, commit black changes to the pull request
- uses: actions/setup-python@v1
- run: pip install black
- run: black --check .
- name: If needed, commit black changes to a new pull request
if: failure()
run: |
black .
git config --global user.name 'autoblack'
git config --global user.email 'cclauss@users.noreply.github.com'
git config --global user.name github-actions
git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com'
git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY
git checkout $GITHUB_HEAD_REF
git commit -am "fixup: Format Python code with psf/black"
git push
git commit -am "fixup! Format Python code with psf/black push"
git push --force origin HEAD:$GITHUB_REF

View File

@ -41,19 +41,21 @@ def miller_rabin(n, allow_probable=False):
"A return value of True indicates a probable prime."
)
# array bounds provided by analysis
bounds = [2_047,
1_373_653,
25_326_001,
3_215_031_751,
2_152_302_898_747,
3_474_749_660_383,
341_550_071_728_321,
1,
3_825_123_056_546_413_051,
1,
1,
318_665_857_834_031_151_167_461,
3_317_044_064_679_887_385_961_981]
bounds = [
2_047,
1_373_653,
25_326_001,
3_215_031_751,
2_152_302_898_747,
3_474_749_660_383,
341_550_071_728_321,
1,
3_825_123_056_546_413_051,
1,
1,
318_665_857_834_031_151_167_461,
3_317_044_064_679_887_385_961_981,
]
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
for idx, _p in enumerate(bounds, 1):
@ -131,5 +133,5 @@ def test_miller_rabin():
# upper limit for probabilistic test
if __name__ == '__main__':
if __name__ == "__main__":
test_miller_rabin()

View File

@ -1,8 +1,8 @@
def find_primitive(n):
for r in range(1, n):
li = []
for x in range(n-1):
val = pow(r,x,n)
for x in range(n - 1):
val = pow(r, x, n)
if val in li:
break
li.append(val)
@ -11,16 +11,15 @@ def find_primitive(n):
if __name__ == "__main__":
q = int(input('Enter a prime number q: '))
q = int(input("Enter a prime number q: "))
a = find_primitive(q)
a_private = int(input('Enter private key of A: '))
a_private = int(input("Enter private key of A: "))
a_public = pow(a, a_private, q)
b_private = int(input('Enter private key of B: '))
b_private = int(input("Enter private key of B: "))
b_public = pow(a, b_private, q)
a_secret = pow(b_public, a_private, q)
b_secret = pow(a_public, b_private, q)
print('The key value generated by A is: ', a_secret)
print('The key value generated by B is: ', b_secret)
print("The key value generated by A is: ", a_secret)
print("The key value generated by B is: ", b_secret)

View File

@ -22,7 +22,7 @@ def display(tree): # In Order traversal of the tree
def depth_of_tree(
tree
tree,
): # This is the recursive function to find the depth of binary tree.
if tree is None:
return 0
@ -36,7 +36,7 @@ def depth_of_tree(
def is_full_binary_tree(
tree
tree,
): # This functions returns that is it full binary tree or not?
if tree is None:
return True

View File

@ -172,7 +172,6 @@ def main():
args = input()
print("good by!")
if __name__ == "__main__":

View File

@ -77,9 +77,10 @@ class MinHeap:
if smallest != idx:
array[idx], array[smallest] = array[smallest], array[idx]
self.idx_of_element[array[idx]], self.idx_of_element[
array[smallest]
] = (
(
self.idx_of_element[array[idx]],
self.idx_of_element[array[smallest]],
) = (
self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]],
)

View File

@ -23,9 +23,7 @@ class LinkedList: # making main class named linked list
def deleteHead(self):
temp = self.head
self.head = self.head.next # oldHead <--> 2ndElement(head)
self.head.previous = (
None
) # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed
self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed
if self.head is None:
self.tail = None # if empty linked list
return temp

View File

@ -1,6 +1,7 @@
# Recursive Prorgam to create a Linked List from a sequence and
# print a string representation of it.
class Node:
def __init__(self, data=None):
self.data = data
@ -17,7 +18,6 @@ class Node:
return string_rep
def make_linked_list(elements_list):
"""Creates a Linked List from the elements of the given sequence
(list/tuple) and returns the head of the Linked List."""
@ -36,8 +36,7 @@ def make_linked_list(elements_list):
return head
list_data = [1,3,5,32,44,12,43]
list_data = [1, 3, 5, 32, 44, 12, 43]
print(f"List: {list_data}")
print("Creating Linked List from List.")
linked_list = make_linked_list(list_data)

View File

@ -1,5 +1,6 @@
# Program to print the elements of a linked list in reverse
class Node:
def __init__(self, data=None):
self.data = data
@ -16,7 +17,6 @@ class Node:
return string_rep
def make_linked_list(elements_list):
"""Creates a Linked List from the elements of the given sequence
(list/tuple) and returns the head of the Linked List."""
@ -34,6 +34,7 @@ def make_linked_list(elements_list):
current = current.next
return head
def print_reverse(head_node):
"""Prints the elements of the given Linked List in reverse order"""
@ -46,8 +47,7 @@ def print_reverse(head_node):
print(head_node.data)
list_data = [14,52,14,12,43]
list_data = [14, 52, 14, 12, 43]
linked_list = make_linked_list(list_data)
print("Linked List:")
print(linked_list)

View File

@ -48,8 +48,9 @@ def longest_subsequence(array: List[int]) -> List[int]: # This function is recu
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -6,6 +6,7 @@
#############################
from typing import List
def CeilIndex(v, l, r, key):
while r - l > 1:
m = (l + r) // 2
@ -49,4 +50,5 @@ def LongestIncreasingSubsequenceLength(v: List[int]) -> int:
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -75,6 +75,7 @@ if __name__ == "__main__":
import time
import matplotlib.pyplot as plt
from random import randint
inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
tim = []
for i in inputs:

View File

@ -2,8 +2,8 @@ if __name__ == "__main__":
import socket # Import socket module
ONE_CONNECTION_ONLY = (
True
) # Set this to False if you wish to continuously accept connections
True # Set this to False if you wish to continuously accept connections
)
filename = "mytext.txt"
port = 12312 # Reserve a port for your service.

View File

@ -9,10 +9,12 @@ def ceil(x) -> int:
>>> all(ceil(n) == math.ceil(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
True
"""
return x if isinstance(x, int) or x - int(x) == 0 else int(x + 1) if x > 0 else int(x)
return (
x if isinstance(x, int) or x - int(x) == 0 else int(x + 1) if x > 0 else int(x)
)
if __name__ == '__main__':
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -28,7 +28,7 @@ def factorial(input_number: int) -> int:
return result
if __name__ == '__main__':
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -24,7 +24,7 @@ def factorial(n: int) -> int:
return 1 if n == 0 or n == 1 else n * factorial(n - 1)
if __name__ == '__main__':
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -9,10 +9,12 @@ def floor(x) -> int:
>>> all(floor(n) == math.floor(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
True
"""
return x if isinstance(x, int) or x - int(x) == 0 else int(x) if x > 0 else int(x - 1)
return (
x if isinstance(x, int) or x - int(x) == 0 else int(x) if x > 0 else int(x - 1)
)
if __name__ == '__main__':
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -50,7 +50,7 @@ def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int:
>>> gaussian(2523, mu=234234, sigma=3425)
0.0
"""
return 1 / sqrt(2 * pi * sigma ** 2) * exp(-(x - mu) ** 2 / 2 * sigma ** 2)
return 1 / sqrt(2 * pi * sigma ** 2) * exp(-((x - mu) ** 2) / 2 * sigma ** 2)
if __name__ == "__main__":

View File

@ -21,7 +21,7 @@ def perfect_square(num: int) -> bool:
return math.sqrt(num) * math.sqrt(num) == num
if __name__ == '__main__':
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -7,28 +7,42 @@ import input_data
random_numer = 42
np.random.seed(random_numer)
def ReLu(x):
mask = (x>0) * 1.0
return mask *x
mask = (x > 0) * 1.0
return mask * x
def d_ReLu(x):
mask = (x>0) * 1.0
mask = (x > 0) * 1.0
return mask
def arctan(x):
return np.arctan(x)
def d_arctan(x):
return 1 / (1 + x ** 2)
def log(x):
return 1 / ( 1+ np.exp(-1*x))
return 1 / (1 + np.exp(-1 * x))
def d_log(x):
return log(x) * (1 - log(x))
def tanh(x):
return np.tanh(x)
def d_tanh(x):
return 1 - np.tanh(x) ** 2
def plot(samples):
fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4)
@ -36,104 +50,140 @@ def plot(samples):
for i, sample in enumerate(samples):
ax = plt.subplot(gs[i])
plt.axis('off')
plt.axis("off")
ax.set_xticklabels([])
ax.set_yticklabels([])
ax.set_aspect('equal')
plt.imshow(sample.reshape(28, 28), cmap='Greys_r')
ax.set_aspect("equal")
plt.imshow(sample.reshape(28, 28), cmap="Greys_r")
return fig
# 1. Load Data and declare hyper
print('--------- Load Data ----------')
mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
print("--------- Load Data ----------")
mnist = input_data.read_data_sets("MNIST_data", one_hot=False)
temp = mnist.test
images, labels = temp.images, temp.labels
images, labels = shuffle(np.asarray(images),np.asarray(labels))
images, labels = shuffle(np.asarray(images), np.asarray(labels))
num_epoch = 10
learing_rate = 0.00009
G_input = 100
hidden_input,hidden_input2,hidden_input3 = 128,256,346
hidden_input4,hidden_input5,hidden_input6 = 480,560,686
hidden_input, hidden_input2, hidden_input3 = 128, 256, 346
hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686
print('--------- Declare Hyper Parameters ----------')
print("--------- Declare Hyper Parameters ----------")
# 2. Declare Weights
D_W1 = np.random.normal(size=(784,hidden_input),scale=(1. / np.sqrt(784 / 2.))) *0.002
D_W1 = (
np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0))) * 0.002
)
# D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
D_b1 = np.zeros(hidden_input)
D_W2 = np.random.normal(size=(hidden_input,1),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002
D_W2 = (
np.random.normal(size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0)))
* 0.002
)
# D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002
D_b2 = np.zeros(1)
G_W1 = np.random.normal(size=(G_input,hidden_input),scale=(1. / np.sqrt(G_input / 2.))) *0.002
G_W1 = (
np.random.normal(size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0)))
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b1 = np.zeros(hidden_input)
G_W2 = np.random.normal(size=(hidden_input,hidden_input2),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002
G_W2 = (
np.random.normal(
size=(hidden_input, hidden_input2), scale=(1.0 / np.sqrt(hidden_input / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b2 = np.zeros(hidden_input2)
G_W3 = np.random.normal(size=(hidden_input2,hidden_input3),scale=(1. / np.sqrt(hidden_input2 / 2.))) *0.002
G_W3 = (
np.random.normal(
size=(hidden_input2, hidden_input3), scale=(1.0 / np.sqrt(hidden_input2 / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b3 = np.zeros(hidden_input3)
G_W4 = np.random.normal(size=(hidden_input3,hidden_input4),scale=(1. / np.sqrt(hidden_input3 / 2.))) *0.002
G_W4 = (
np.random.normal(
size=(hidden_input3, hidden_input4), scale=(1.0 / np.sqrt(hidden_input3 / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b4 = np.zeros(hidden_input4)
G_W5 = np.random.normal(size=(hidden_input4,hidden_input5),scale=(1. / np.sqrt(hidden_input4 / 2.))) *0.002
G_W5 = (
np.random.normal(
size=(hidden_input4, hidden_input5), scale=(1.0 / np.sqrt(hidden_input4 / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b5 = np.zeros(hidden_input5)
G_W6 = np.random.normal(size=(hidden_input5,hidden_input6),scale=(1. / np.sqrt(hidden_input5 / 2.))) *0.002
G_W6 = (
np.random.normal(
size=(hidden_input5, hidden_input6), scale=(1.0 / np.sqrt(hidden_input5 / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b6 = np.zeros(hidden_input6)
G_W7 = np.random.normal(size=(hidden_input6,784),scale=(1. / np.sqrt(hidden_input6 / 2.))) *0.002
G_W7 = (
np.random.normal(
size=(hidden_input6, 784), scale=(1.0 / np.sqrt(hidden_input6 / 2.0))
)
* 0.002
)
# G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002
G_b7 = np.zeros(784)
# 3. For Adam Optimzier
v1,m1 = 0,0
v2,m2 = 0,0
v3,m3 = 0,0
v4,m4 = 0,0
v1, m1 = 0, 0
v2, m2 = 0, 0
v3, m3 = 0, 0
v4, m4 = 0, 0
v5,m5 = 0,0
v6,m6 = 0,0
v7,m7 = 0,0
v8,m8 = 0,0
v9,m9 = 0,0
v10,m10 = 0,0
v11,m11 = 0,0
v12,m12 = 0,0
v5, m5 = 0, 0
v6, m6 = 0, 0
v7, m7 = 0, 0
v8, m8 = 0, 0
v9, m9 = 0, 0
v10, m10 = 0, 0
v11, m11 = 0, 0
v12, m12 = 0, 0
v13,m13 = 0,0
v14,m14 = 0,0
v13, m13 = 0, 0
v14, m14 = 0, 0
v15,m15 = 0,0
v16,m16 = 0,0
v15, m15 = 0, 0
v16, m16 = 0, 0
v17,m17 = 0,0
v18,m18 = 0,0
v17, m17 = 0, 0
v18, m18 = 0, 0
beta_1,beta_2,eps = 0.9,0.999,0.00000001
beta_1, beta_2, eps = 0.9, 0.999, 0.00000001
print('--------- Started Training ----------')
print("--------- Started Training ----------")
for iter in range(num_epoch):
random_int = np.random.randint(len(images) - 5)
current_image = np.expand_dims(images[random_int],axis=0)
current_image = np.expand_dims(images[random_int], axis=0)
# Func: Generate The first Fake Data
Z = np.random.uniform(-1., 1., size=[1, G_input])
Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
Gl1 = Z.dot(G_W1) + G_b1
Gl1A = arctan(Gl1)
Gl2 = Gl1A.dot(G_W2) + G_b2
@ -164,38 +214,38 @@ for iter in range(num_epoch):
Dl2_fA = log(Dl2_f)
# Func: Cost D
D_cost = -np.log(Dl2_rA) + np.log(1.0- Dl2_fA)
D_cost = -np.log(Dl2_rA) + np.log(1.0 - Dl2_fA)
# Func: Gradient
grad_f_w2_part_1 = 1/(1.0- Dl2_fA)
grad_f_w2_part_2 = d_log(Dl2_f)
grad_f_w2_part_3 = Dl1_fA
grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2)
grad_f_w2_part_1 = 1 / (1.0 - Dl2_fA)
grad_f_w2_part_2 = d_log(Dl2_f)
grad_f_w2_part_3 = Dl1_fA
grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2)
grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2
grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T)
grad_f_w1_part_2 = d_ReLu(Dl1_f)
grad_f_w1_part_3 = current_fake_data
grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2)
grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2
grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T)
grad_f_w1_part_2 = d_ReLu(Dl1_f)
grad_f_w1_part_3 = current_fake_data
grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2)
grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2
grad_r_w2_part_1 = - 1/Dl2_rA
grad_r_w2_part_2 = d_log(Dl2_r)
grad_r_w2_part_3 = Dl1_rA
grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2)
grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2
grad_r_w2_part_1 = -1 / Dl2_rA
grad_r_w2_part_2 = d_log(Dl2_r)
grad_r_w2_part_3 = Dl1_rA
grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2)
grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2
grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T)
grad_r_w1_part_2 = d_ReLu(Dl1_r)
grad_r_w1_part_3 = current_image
grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2)
grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2
grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T)
grad_r_w1_part_2 = d_ReLu(Dl1_r)
grad_r_w1_part_3 = current_image
grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2)
grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2
grad_w1 =grad_f_w1 + grad_r_w1
grad_b1 =grad_f_b1 + grad_r_b1
grad_w1 = grad_f_w1 + grad_r_w1
grad_b1 = grad_f_b1 + grad_r_b1
grad_w2 =grad_f_w2 + grad_r_w2
grad_b2 =grad_f_b2 + grad_r_b2
grad_w2 = grad_f_w2 + grad_r_w2
grad_b2 = grad_f_b2 + grad_r_b2
# ---- Update Gradient ----
m1 = beta_1 * m1 + (1 - beta_1) * grad_w1
@ -210,14 +260,22 @@ for iter in range(num_epoch):
m4 = beta_1 * m4 + (1 - beta_1) * grad_b2
v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2
D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 /(1-beta_2) ) + eps)) * (m1/(1-beta_1))
D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 /(1-beta_2) ) + eps)) * (m2/(1-beta_1))
D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 / (1 - beta_2)) + eps)) * (
m1 / (1 - beta_1)
)
D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 / (1 - beta_2)) + eps)) * (
m2 / (1 - beta_1)
)
D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 /(1-beta_2) ) + eps)) * (m3/(1-beta_1))
D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 /(1-beta_2) ) + eps)) * (m4/(1-beta_1))
D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 / (1 - beta_2)) + eps)) * (
m3 / (1 - beta_1)
)
D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 / (1 - beta_2)) + eps)) * (
m4 / (1 - beta_1)
)
# Func: Forward Feed for G
Z = np.random.uniform(-1., 1., size=[1, G_input])
Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
Gl1 = Z.dot(G_W1) + G_b1
Gl1A = arctan(Gl1)
Gl2 = Gl1A.dot(G_W2) + G_b2
@ -244,7 +302,9 @@ for iter in range(num_epoch):
G_cost = -np.log(Dl2_A)
# Func: Gradient
grad_G_w7_part_1 = ((-1/Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(D_W1.T)
grad_G_w7_part_1 = ((-1 / Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(
D_W1.T
)
grad_G_w7_part_2 = d_log(Gl7)
grad_G_w7_part_3 = Gl6A
grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1)
@ -254,31 +314,31 @@ for iter in range(num_epoch):
grad_G_w6_part_2 = d_ReLu(Gl6)
grad_G_w6_part_3 = Gl5A
grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2)
grad_G_b6 = (grad_G_w6_part_1 * grad_G_w6_part_2)
grad_G_b6 = grad_G_w6_part_1 * grad_G_w6_part_2
grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T)
grad_G_w5_part_2 = d_tanh(Gl5)
grad_G_w5_part_3 = Gl4A
grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2)
grad_G_b5 = (grad_G_w5_part_1 * grad_G_w5_part_2)
grad_G_b5 = grad_G_w5_part_1 * grad_G_w5_part_2
grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T)
grad_G_w4_part_2 = d_ReLu(Gl4)
grad_G_w4_part_3 = Gl3A
grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2)
grad_G_b4 = (grad_G_w4_part_1 * grad_G_w4_part_2)
grad_G_b4 = grad_G_w4_part_1 * grad_G_w4_part_2
grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T)
grad_G_w3_part_2 = d_arctan(Gl3)
grad_G_w3_part_3 = Gl2A
grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2)
grad_G_b3 = (grad_G_w3_part_1 * grad_G_w3_part_2)
grad_G_b3 = grad_G_w3_part_1 * grad_G_w3_part_2
grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T)
grad_G_w2_part_2 = d_ReLu(Gl2)
grad_G_w2_part_3 = Gl1A
grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2)
grad_G_b2 = (grad_G_w2_part_1 * grad_G_w2_part_2)
grad_G_b2 = grad_G_w2_part_1 * grad_G_w2_part_2
grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T)
grad_G_w1_part_2 = d_arctan(Gl1)
@ -329,29 +389,57 @@ for iter in range(num_epoch):
m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7
v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2
G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 /(1-beta_2) ) + eps)) * (m5/(1-beta_1))
G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 /(1-beta_2) ) + eps)) * (m6/(1-beta_1))
G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 / (1 - beta_2)) + eps)) * (
m5 / (1 - beta_1)
)
G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 / (1 - beta_2)) + eps)) * (
m6 / (1 - beta_1)
)
G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 /(1-beta_2) ) + eps)) * (m7/(1-beta_1))
G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 /(1-beta_2) ) + eps)) * (m8/(1-beta_1))
G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 / (1 - beta_2)) + eps)) * (
m7 / (1 - beta_1)
)
G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 / (1 - beta_2)) + eps)) * (
m8 / (1 - beta_1)
)
G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 /(1-beta_2) ) + eps)) * (m9/(1-beta_1))
G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 /(1-beta_2) ) + eps)) * (m10/(1-beta_1))
G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 / (1 - beta_2)) + eps)) * (
m9 / (1 - beta_1)
)
G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 / (1 - beta_2)) + eps)) * (
m10 / (1 - beta_1)
)
G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 /(1-beta_2) ) + eps)) * (m11/(1-beta_1))
G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 /(1-beta_2) ) + eps)) * (m12/(1-beta_1))
G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 / (1 - beta_2)) + eps)) * (
m11 / (1 - beta_1)
)
G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 / (1 - beta_2)) + eps)) * (
m12 / (1 - beta_1)
)
G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 /(1-beta_2) ) + eps)) * (m13/(1-beta_1))
G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 /(1-beta_2) ) + eps)) * (m14/(1-beta_1))
G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 / (1 - beta_2)) + eps)) * (
m13 / (1 - beta_1)
)
G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 / (1 - beta_2)) + eps)) * (
m14 / (1 - beta_1)
)
G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 /(1-beta_2) ) + eps)) * (m15/(1-beta_1))
G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 /(1-beta_2) ) + eps)) * (m16/(1-beta_1))
G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 / (1 - beta_2)) + eps)) * (
m15 / (1 - beta_1)
)
G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 / (1 - beta_2)) + eps)) * (
m16 / (1 - beta_1)
)
G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 /(1-beta_2) ) + eps)) * (m17/(1-beta_1))
G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 /(1-beta_2) ) + eps)) * (m18/(1-beta_1))
G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 / (1 - beta_2)) + eps)) * (
m17 / (1 - beta_1)
)
G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 / (1 - beta_2)) + eps)) * (
m18 / (1 - beta_1)
)
# --- Print Error ----
#print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
# print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
if iter == 0:
learing_rate = learing_rate * 0.01
@ -359,12 +447,20 @@ for iter in range(num_epoch):
learing_rate = learing_rate * 0.01
# ---- Print to Out put ----
if iter%10 == 0:
if iter % 10 == 0:
print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
print('--------- Show Example Result See Tab Above ----------')
print('--------- Wait for the image to load ---------')
Z = np.random.uniform(-1., 1., size=[16, G_input])
print(
"Current Iter: ",
iter,
" Current D cost:",
D_cost,
" Current G cost: ",
G_cost,
end="\r",
)
print("--------- Show Example Result See Tab Above ----------")
print("--------- Wait for the image to load ---------")
Z = np.random.uniform(-1.0, 1.0, size=[16, G_input])
Gl1 = Z.dot(G_W1) + G_b1
Gl1A = arctan(Gl1)
@ -384,8 +480,19 @@ for iter in range(num_epoch):
current_fake_data = log(Gl7)
fig = plot(current_fake_data)
fig.savefig('Click_Me_{}.png'.format(str(iter).zfill(3)+"_Ginput_"+str(G_input)+ \
"_hiddenone"+str(hidden_input) + "_hiddentwo"+str(hidden_input2) + "_LR_" + str(learing_rate)
), bbox_inches='tight')
#for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021
fig.savefig(
"Click_Me_{}.png".format(
str(iter).zfill(3)
+ "_Ginput_"
+ str(G_input)
+ "_hiddenone"
+ str(hidden_input)
+ "_hiddentwo"
+ str(hidden_input2)
+ "_LR_"
+ str(learing_rate)
),
bbox_inches="tight",
)
# for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021
# -- end code --

View File

@ -34,20 +34,20 @@ from tensorflow.python.framework import random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
_Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test'])
_Datasets = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
dt = numpy.dtype(numpy.uint32).newbyteorder(">")
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
@deprecated(None, 'Please use tf.data to implement this functionality.')
@deprecated(None, "Please use tf.data to implement this functionality.")
def _extract_images(f):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].
Args:
f: A file object that can be passed into a gzip reader.
@ -59,34 +59,35 @@ def _extract_images(f):
ValueError: If the bytestream does not start with 2051.
"""
print('Extracting', f.name)
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number %d in MNIST image file: %s' %
(magic, f.name))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
print("Extracting", f.name)
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
"Invalid magic number %d in MNIST image file: %s" % (magic, f.name)
)
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
@deprecated(None, 'Please use tf.one_hot on tensors.')
@deprecated(None, "Please use tf.one_hot on tensors.")
def _dense_to_one_hot(labels_dense, num_classes):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
@deprecated(None, 'Please use tf.data to implement this functionality.')
@deprecated(None, "Please use tf.data to implement this functionality.")
def _extract_labels(f, one_hot=False, num_classes=10):
"""Extract the labels into a 1D uint8 numpy array [index].
"""Extract the labels into a 1D uint8 numpy array [index].
Args:
f: A file object that can be passed into a gzip reader.
@ -99,37 +100,43 @@ def _extract_labels(f, one_hot=False, num_classes=10):
Raises:
ValueError: If the bystream doesn't start with 2049.
"""
print('Extracting', f.name)
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError('Invalid magic number %d in MNIST label file: %s' %
(magic, f.name))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return _dense_to_one_hot(labels, num_classes)
return labels
print("Extracting", f.name)
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
"Invalid magic number %d in MNIST label file: %s" % (magic, f.name)
)
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return _dense_to_one_hot(labels, num_classes)
return labels
class _DataSet(object):
"""Container class for a _DataSet (deprecated).
"""Container class for a _DataSet (deprecated).
THIS CLASS IS DEPRECATED.
"""
@deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py'
' from tensorflow/models.')
def __init__(self,
images,
labels,
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True,
seed=None):
"""Construct a _DataSet.
@deprecated(
None,
"Please use alternatives such as official/mnist/_DataSet.py"
" from tensorflow/models.",
)
def __init__(
self,
images,
labels,
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True,
seed=None,
):
"""Construct a _DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
@ -146,101 +153,105 @@ class _DataSet(object):
reshape: Bool. If True returned images are returned flattened to vectors.
seed: The random seed to use.
"""
seed1, seed2 = random_seed.get_seed(seed)
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seed1 if seed is None else seed2)
dtype = dtypes.as_dtype(dtype).base_dtype
if dtype not in (dtypes.uint8, dtypes.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
self._num_examples = images.shape[0]
seed1, seed2 = random_seed.get_seed(seed)
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seed1 if seed is None else seed2)
dtype = dtypes.as_dtype(dtype).base_dtype
if dtype not in (dtypes.uint8, dtypes.float32):
raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == dtypes.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
images = images.reshape(
images.shape[0], images.shape[1] * images.shape[2]
)
if dtype == dtypes.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, fake_data=False, shuffle=True):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)
], [fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
perm0 = numpy.arange(self._num_examples)
numpy.random.shuffle(perm0)
self._images = self.images[perm0]
self._labels = self.labels[perm0]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
rest_num_examples = self._num_examples - start
images_rest_part = self._images[start:self._num_examples]
labels_rest_part = self._labels[start:self._num_examples]
# Shuffle the data
if shuffle:
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self.images[perm]
self._labels = self.labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size - rest_num_examples
end = self._index_in_epoch
images_new_part = self._images[start:end]
labels_new_part = self._labels[start:end]
return numpy.concatenate((images_rest_part, images_new_part),
axis=0), numpy.concatenate(
(labels_rest_part, labels_new_part), axis=0)
else:
self._index_in_epoch += batch_size
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
def next_batch(self, batch_size, fake_data=False, shuffle=True):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return (
[fake_image for _ in xrange(batch_size)],
[fake_label for _ in xrange(batch_size)],
)
start = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
perm0 = numpy.arange(self._num_examples)
numpy.random.shuffle(perm0)
self._images = self.images[perm0]
self._labels = self.labels[perm0]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
rest_num_examples = self._num_examples - start
images_rest_part = self._images[start : self._num_examples]
labels_rest_part = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self.images[perm]
self._labels = self.labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size - rest_num_examples
end = self._index_in_epoch
images_new_part = self._images[start:end]
labels_new_part = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part), axis=0),
numpy.concatenate((labels_rest_part, labels_new_part), axis=0),
)
else:
self._index_in_epoch += batch_size
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(None, 'Please write your own downloading logic.')
@deprecated(None, "Please write your own downloading logic.")
def _maybe_download(filename, work_directory, source_url):
"""Download the data from source url, unless it's already here.
"""Download the data from source url, unless it's already here.
Args:
filename: string, name of the file in the directory.
@ -250,83 +261,90 @@ def _maybe_download(filename, work_directory, source_url):
Returns:
Path to resulting file.
"""
if not gfile.Exists(work_directory):
gfile.MakeDirs(work_directory)
filepath = os.path.join(work_directory, filename)
if not gfile.Exists(filepath):
urllib.request.urlretrieve(source_url, filepath)
with gfile.GFile(filepath) as f:
size = f.size()
print('Successfully downloaded', filename, size, 'bytes.')
return filepath
if not gfile.Exists(work_directory):
gfile.MakeDirs(work_directory)
filepath = os.path.join(work_directory, filename)
if not gfile.Exists(filepath):
urllib.request.urlretrieve(source_url, filepath)
with gfile.GFile(filepath) as f:
size = f.size()
print("Successfully downloaded", filename, size, "bytes.")
return filepath
@deprecated(None, 'Please use alternatives such as:'
' tensorflow_datasets.load(\'mnist\')')
def read_data_sets(train_dir,
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True,
validation_size=5000,
seed=None,
source_url=DEFAULT_SOURCE_URL):
if fake_data:
@deprecated(
None, "Please use alternatives such as:" " tensorflow_datasets.load('mnist')"
)
def read_data_sets(
train_dir,
fake_data=False,
one_hot=False,
dtype=dtypes.float32,
reshape=True,
validation_size=5000,
seed=None,
source_url=DEFAULT_SOURCE_URL,
):
if fake_data:
def fake():
return _DataSet([], [],
fake_data=True,
one_hot=one_hot,
dtype=dtype,
seed=seed)
def fake():
return _DataSet(
[], [], fake_data=True, one_hot=one_hot, dtype=dtype, seed=seed
)
train = fake()
validation = fake()
test = fake()
return _Datasets(train=train, validation=validation, test=test)
if not source_url: # empty string check
source_url = DEFAULT_SOURCE_URL
train_images_file = "train-images-idx3-ubyte.gz"
train_labels_file = "train-labels-idx1-ubyte.gz"
test_images_file = "t10k-images-idx3-ubyte.gz"
test_labels_file = "t10k-labels-idx1-ubyte.gz"
local_file = _maybe_download(
train_images_file, train_dir, source_url + train_images_file
)
with gfile.Open(local_file, "rb") as f:
train_images = _extract_images(f)
local_file = _maybe_download(
train_labels_file, train_dir, source_url + train_labels_file
)
with gfile.Open(local_file, "rb") as f:
train_labels = _extract_labels(f, one_hot=one_hot)
local_file = _maybe_download(
test_images_file, train_dir, source_url + test_images_file
)
with gfile.Open(local_file, "rb") as f:
test_images = _extract_images(f)
local_file = _maybe_download(
test_labels_file, train_dir, source_url + test_labels_file
)
with gfile.Open(local_file, "rb") as f:
test_labels = _extract_labels(f, one_hot=one_hot)
if not 0 <= validation_size <= len(train_images):
raise ValueError(
"Validation size should be between 0 and {}. Received: {}.".format(
len(train_images), validation_size
)
)
validation_images = train_images[:validation_size]
validation_labels = train_labels[:validation_size]
train_images = train_images[validation_size:]
train_labels = train_labels[validation_size:]
options = dict(dtype=dtype, reshape=reshape, seed=seed)
train = _DataSet(train_images, train_labels, **options)
validation = _DataSet(validation_images, validation_labels, **options)
test = _DataSet(test_images, test_labels, **options)
train = fake()
validation = fake()
test = fake()
return _Datasets(train=train, validation=validation, test=test)
if not source_url: # empty string check
source_url = DEFAULT_SOURCE_URL
train_images_file = 'train-images-idx3-ubyte.gz'
train_labels_file = 'train-labels-idx1-ubyte.gz'
test_images_file = 't10k-images-idx3-ubyte.gz'
test_labels_file = 't10k-labels-idx1-ubyte.gz'
local_file = _maybe_download(train_images_file, train_dir,
source_url + train_images_file)
with gfile.Open(local_file, 'rb') as f:
train_images = _extract_images(f)
local_file = _maybe_download(train_labels_file, train_dir,
source_url + train_labels_file)
with gfile.Open(local_file, 'rb') as f:
train_labels = _extract_labels(f, one_hot=one_hot)
local_file = _maybe_download(test_images_file, train_dir,
source_url + test_images_file)
with gfile.Open(local_file, 'rb') as f:
test_images = _extract_images(f)
local_file = _maybe_download(test_labels_file, train_dir,
source_url + test_labels_file)
with gfile.Open(local_file, 'rb') as f:
test_labels = _extract_labels(f, one_hot=one_hot)
if not 0 <= validation_size <= len(train_images):
raise ValueError(
'Validation size should be between 0 and {}. Received: {}.'.format(
len(train_images), validation_size))
validation_images = train_images[:validation_size]
validation_labels = train_labels[:validation_size]
train_images = train_images[validation_size:]
train_labels = train_labels[validation_size:]
options = dict(dtype=dtype, reshape=reshape, seed=seed)
train = _DataSet(train_images, train_labels, **options)
validation = _DataSet(validation_images, validation_labels, **options)
test = _DataSet(test_images, test_labels, **options)
return _Datasets(train=train, validation=validation, test=test)

View File

@ -2,12 +2,13 @@ from abc import abstractmethod
import sys
from collections import deque
class LRUCache:
""" Page Replacement Algorithm, Least Recently Used (LRU) Caching."""
dq_store = object() # Cache store of keys
key_reference_map = object() # References of the keys in cache
_MAX_CAPACITY: int = 10 # Maximum capacity of cache
dq_store = object() # Cache store of keys
key_reference_map = object() # References of the keys in cache
_MAX_CAPACITY: int = 10 # Maximum capacity of cache
@abstractmethod
def __init__(self, n: int):
@ -19,7 +20,7 @@ class LRUCache:
if not n:
LRUCache._MAX_CAPACITY = sys.maxsize
elif n < 0:
raise ValueError('n should be an integer greater than 0.')
raise ValueError("n should be an integer greater than 0.")
else:
LRUCache._MAX_CAPACITY = n
@ -51,6 +52,7 @@ class LRUCache:
for k in self.dq_store:
print(k)
if __name__ == "__main__":
lru_cache = LRUCache(4)
lru_cache.refer(1)

View File

@ -27,7 +27,7 @@ def solution(n):
"""
fact = 1
result = 0
for i in range(1,n + 1):
for i in range(1, n + 1):
fact *= i
for j in str(fact):

View File

@ -14,15 +14,13 @@ import os
from math import log10
def find_largest(data_file: str="base_exp.txt") -> int:
def find_largest(data_file: str = "base_exp.txt") -> int:
"""
>>> find_largest()
709
"""
largest = [0, 0]
for i, line in enumerate(
open(os.path.join(os.path.dirname(__file__), data_file))
):
for i, line in enumerate(open(os.path.join(os.path.dirname(__file__), data_file))):
a, x = list(map(int, line.split(",")))
if x * log10(a) > largest[0]:
largest = [x * log10(a), i + 1]

View File

@ -3,8 +3,10 @@ import requests
def imdb_top(imdb_top_n):
base_url = (f"https://www.imdb.com/search/title?title_type="
f"feature&sort=num_votes,desc&count={imdb_top_n}")
base_url = (
f"https://www.imdb.com/search/title?title_type="
f"feature&sort=num_votes,desc&count={imdb_top_n}"
)
source = BeautifulSoup(requests.get(base_url).content, "html.parser")
for m in source.findAll("div", class_="lister-item mode-advanced"):
print("\n" + m.h3.a.text) # movie's name