GitHub Action formats our code with psf/black (#1569)

* GitHub Action formats our code with psf/black

@poyea Your review please.

* fixup! Format Python code with psf/black push
This commit is contained in:
Christian Clauss 2019-11-14 19:59:43 +01:00 committed by GitHub
parent 52cf668617
commit 5df8aec66c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
25 changed files with 523 additions and 400 deletions

View File

@ -1,34 +1,24 @@
# GitHub Action that uses Black to reformat the Python code in an incoming pull request. # GitHub Action that uses Black to reformat Python code (if needed) when doing a git push.
# If all Python code in the pull request is complient with Black then this Action does nothing. # If all Python code in the repo is complient with Black then this Action does nothing.
# Othewrwise, Black is run and its changes are committed back to the incoming pull request. # Otherwise, Black is run and its changes are committed to the repo.
# https://github.com/cclauss/autoblack # https://github.com/cclauss/autoblack
name: autoblack name: autoblack_push
on: [pull_request] on: [push]
jobs: jobs:
build: build:
runs-on: ubuntu-latest runs-on: ubuntu-latest
strategy:
max-parallel: 1
matrix:
python-version: [3.7]
steps: steps:
- uses: actions/checkout@v1 - uses: actions/checkout@v1
- name: Set up Python ${{ matrix.python-version }} - uses: actions/setup-python@v1
uses: actions/setup-python@v1 - run: pip install black
with: - run: black --check .
python-version: ${{ matrix.python-version }} - name: If needed, commit black changes to a new pull request
- name: Install psf/black
run: pip install black
- name: Run black --check .
run: black --check .
- name: If needed, commit black changes to the pull request
if: failure() if: failure()
run: | run: |
black . black .
git config --global user.name 'autoblack' git config --global user.name github-actions
git config --global user.email 'cclauss@users.noreply.github.com' git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com'
git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY
git checkout $GITHUB_HEAD_REF git commit -am "fixup! Format Python code with psf/black push"
git commit -am "fixup: Format Python code with psf/black" git push --force origin HEAD:$GITHUB_REF
git push

View File

@ -41,19 +41,21 @@ def miller_rabin(n, allow_probable=False):
"A return value of True indicates a probable prime." "A return value of True indicates a probable prime."
) )
# array bounds provided by analysis # array bounds provided by analysis
bounds = [2_047, bounds = [
1_373_653, 2_047,
25_326_001, 1_373_653,
3_215_031_751, 25_326_001,
2_152_302_898_747, 3_215_031_751,
3_474_749_660_383, 2_152_302_898_747,
341_550_071_728_321, 3_474_749_660_383,
1, 341_550_071_728_321,
3_825_123_056_546_413_051, 1,
1, 3_825_123_056_546_413_051,
1, 1,
318_665_857_834_031_151_167_461, 1,
3_317_044_064_679_887_385_961_981] 318_665_857_834_031_151_167_461,
3_317_044_064_679_887_385_961_981,
]
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41]
for idx, _p in enumerate(bounds, 1): for idx, _p in enumerate(bounds, 1):
@ -131,5 +133,5 @@ def test_miller_rabin():
# upper limit for probabilistic test # upper limit for probabilistic test
if __name__ == '__main__': if __name__ == "__main__":
test_miller_rabin() test_miller_rabin()

View File

@ -1,8 +1,8 @@
def find_primitive(n): def find_primitive(n):
for r in range(1, n): for r in range(1, n):
li = [] li = []
for x in range(n-1): for x in range(n - 1):
val = pow(r,x,n) val = pow(r, x, n)
if val in li: if val in li:
break break
li.append(val) li.append(val)
@ -11,16 +11,15 @@ def find_primitive(n):
if __name__ == "__main__": if __name__ == "__main__":
q = int(input('Enter a prime number q: ')) q = int(input("Enter a prime number q: "))
a = find_primitive(q) a = find_primitive(q)
a_private = int(input('Enter private key of A: ')) a_private = int(input("Enter private key of A: "))
a_public = pow(a, a_private, q) a_public = pow(a, a_private, q)
b_private = int(input('Enter private key of B: ')) b_private = int(input("Enter private key of B: "))
b_public = pow(a, b_private, q) b_public = pow(a, b_private, q)
a_secret = pow(b_public, a_private, q) a_secret = pow(b_public, a_private, q)
b_secret = pow(a_public, b_private, q) b_secret = pow(a_public, b_private, q)
print('The key value generated by A is: ', a_secret) print("The key value generated by A is: ", a_secret)
print('The key value generated by B is: ', b_secret) print("The key value generated by B is: ", b_secret)

View File

@ -22,7 +22,7 @@ def display(tree): # In Order traversal of the tree
def depth_of_tree( def depth_of_tree(
tree tree,
): # This is the recursive function to find the depth of binary tree. ): # This is the recursive function to find the depth of binary tree.
if tree is None: if tree is None:
return 0 return 0
@ -36,7 +36,7 @@ def depth_of_tree(
def is_full_binary_tree( def is_full_binary_tree(
tree tree,
): # This functions returns that is it full binary tree or not? ): # This functions returns that is it full binary tree or not?
if tree is None: if tree is None:
return True return True

View File

@ -172,7 +172,6 @@ def main():
args = input() args = input()
print("good by!") print("good by!")
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -77,9 +77,10 @@ class MinHeap:
if smallest != idx: if smallest != idx:
array[idx], array[smallest] = array[smallest], array[idx] array[idx], array[smallest] = array[smallest], array[idx]
self.idx_of_element[array[idx]], self.idx_of_element[ (
array[smallest] self.idx_of_element[array[idx]],
] = ( self.idx_of_element[array[smallest]],
) = (
self.idx_of_element[array[smallest]], self.idx_of_element[array[smallest]],
self.idx_of_element[array[idx]], self.idx_of_element[array[idx]],
) )

View File

@ -23,9 +23,7 @@ class LinkedList: # making main class named linked list
def deleteHead(self): def deleteHead(self):
temp = self.head temp = self.head
self.head = self.head.next # oldHead <--> 2ndElement(head) self.head = self.head.next # oldHead <--> 2ndElement(head)
self.head.previous = ( self.head.previous = None # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed
None
) # oldHead --> 2ndElement(head) nothing pointing at it so the old head will be removed
if self.head is None: if self.head is None:
self.tail = None # if empty linked list self.tail = None # if empty linked list
return temp return temp

View File

@ -1,6 +1,7 @@
# Recursive Prorgam to create a Linked List from a sequence and # Recursive Prorgam to create a Linked List from a sequence and
# print a string representation of it. # print a string representation of it.
class Node: class Node:
def __init__(self, data=None): def __init__(self, data=None):
self.data = data self.data = data
@ -17,7 +18,6 @@ class Node:
return string_rep return string_rep
def make_linked_list(elements_list): def make_linked_list(elements_list):
"""Creates a Linked List from the elements of the given sequence """Creates a Linked List from the elements of the given sequence
(list/tuple) and returns the head of the Linked List.""" (list/tuple) and returns the head of the Linked List."""
@ -36,8 +36,7 @@ def make_linked_list(elements_list):
return head return head
list_data = [1, 3, 5, 32, 44, 12, 43]
list_data = [1,3,5,32,44,12,43]
print(f"List: {list_data}") print(f"List: {list_data}")
print("Creating Linked List from List.") print("Creating Linked List from List.")
linked_list = make_linked_list(list_data) linked_list = make_linked_list(list_data)

View File

@ -1,5 +1,6 @@
# Program to print the elements of a linked list in reverse # Program to print the elements of a linked list in reverse
class Node: class Node:
def __init__(self, data=None): def __init__(self, data=None):
self.data = data self.data = data
@ -16,7 +17,6 @@ class Node:
return string_rep return string_rep
def make_linked_list(elements_list): def make_linked_list(elements_list):
"""Creates a Linked List from the elements of the given sequence """Creates a Linked List from the elements of the given sequence
(list/tuple) and returns the head of the Linked List.""" (list/tuple) and returns the head of the Linked List."""
@ -34,6 +34,7 @@ def make_linked_list(elements_list):
current = current.next current = current.next
return head return head
def print_reverse(head_node): def print_reverse(head_node):
"""Prints the elements of the given Linked List in reverse order""" """Prints the elements of the given Linked List in reverse order"""
@ -46,8 +47,7 @@ def print_reverse(head_node):
print(head_node.data) print(head_node.data)
list_data = [14, 52, 14, 12, 43]
list_data = [14,52,14,12,43]
linked_list = make_linked_list(list_data) linked_list = make_linked_list(list_data)
print("Linked List:") print("Linked List:")
print(linked_list) print(linked_list)

View File

@ -48,8 +48,9 @@ def longest_subsequence(array: List[int]) -> List[int]: # This function is recu
return temp_array return temp_array
else: else:
return longest_subseq return longest_subseq
if __name__ == "__main__": if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()

View File

@ -6,6 +6,7 @@
############################# #############################
from typing import List from typing import List
def CeilIndex(v, l, r, key): def CeilIndex(v, l, r, key):
while r - l > 1: while r - l > 1:
m = (l + r) // 2 m = (l + r) // 2
@ -49,4 +50,5 @@ def LongestIncreasingSubsequenceLength(v: List[int]) -> int:
if __name__ == "__main__": if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()

View File

@ -75,6 +75,7 @@ if __name__ == "__main__":
import time import time
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from random import randint from random import randint
inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000] inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
tim = [] tim = []
for i in inputs: for i in inputs:

View File

@ -2,8 +2,8 @@ if __name__ == "__main__":
import socket # Import socket module import socket # Import socket module
ONE_CONNECTION_ONLY = ( ONE_CONNECTION_ONLY = (
True True # Set this to False if you wish to continuously accept connections
) # Set this to False if you wish to continuously accept connections )
filename = "mytext.txt" filename = "mytext.txt"
port = 12312 # Reserve a port for your service. port = 12312 # Reserve a port for your service.

View File

@ -9,10 +9,12 @@ def ceil(x) -> int:
>>> all(ceil(n) == math.ceil(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000)) >>> all(ceil(n) == math.ceil(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
True True
""" """
return x if isinstance(x, int) or x - int(x) == 0 else int(x + 1) if x > 0 else int(x) return (
x if isinstance(x, int) or x - int(x) == 0 else int(x + 1) if x > 0 else int(x)
)
if __name__ == '__main__': if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()

View File

@ -28,7 +28,7 @@ def factorial(input_number: int) -> int:
return result return result
if __name__ == '__main__': if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()

View File

@ -24,7 +24,7 @@ def factorial(n: int) -> int:
return 1 if n == 0 or n == 1 else n * factorial(n - 1) return 1 if n == 0 or n == 1 else n * factorial(n - 1)
if __name__ == '__main__': if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()

View File

@ -9,10 +9,12 @@ def floor(x) -> int:
>>> all(floor(n) == math.floor(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000)) >>> all(floor(n) == math.floor(n) for n in (1, -1, 0, -0, 1.1, -1.1, 1.0, -1.0, 1_000_000_000))
True True
""" """
return x if isinstance(x, int) or x - int(x) == 0 else int(x) if x > 0 else int(x - 1) return (
x if isinstance(x, int) or x - int(x) == 0 else int(x) if x > 0 else int(x - 1)
)
if __name__ == '__main__': if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()

View File

@ -50,7 +50,7 @@ def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int:
>>> gaussian(2523, mu=234234, sigma=3425) >>> gaussian(2523, mu=234234, sigma=3425)
0.0 0.0
""" """
return 1 / sqrt(2 * pi * sigma ** 2) * exp(-(x - mu) ** 2 / 2 * sigma ** 2) return 1 / sqrt(2 * pi * sigma ** 2) * exp(-((x - mu) ** 2) / 2 * sigma ** 2)
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -21,7 +21,7 @@ def perfect_square(num: int) -> bool:
return math.sqrt(num) * math.sqrt(num) == num return math.sqrt(num) * math.sqrt(num) == num
if __name__ == '__main__': if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()

View File

@ -7,28 +7,42 @@ import input_data
random_numer = 42 random_numer = 42
np.random.seed(random_numer) np.random.seed(random_numer)
def ReLu(x): def ReLu(x):
mask = (x>0) * 1.0 mask = (x > 0) * 1.0
return mask *x return mask * x
def d_ReLu(x): def d_ReLu(x):
mask = (x>0) * 1.0 mask = (x > 0) * 1.0
return mask return mask
def arctan(x): def arctan(x):
return np.arctan(x) return np.arctan(x)
def d_arctan(x): def d_arctan(x):
return 1 / (1 + x ** 2) return 1 / (1 + x ** 2)
def log(x): def log(x):
return 1 / ( 1+ np.exp(-1*x)) return 1 / (1 + np.exp(-1 * x))
def d_log(x): def d_log(x):
return log(x) * (1 - log(x)) return log(x) * (1 - log(x))
def tanh(x): def tanh(x):
return np.tanh(x) return np.tanh(x)
def d_tanh(x): def d_tanh(x):
return 1 - np.tanh(x) ** 2 return 1 - np.tanh(x) ** 2
def plot(samples): def plot(samples):
fig = plt.figure(figsize=(4, 4)) fig = plt.figure(figsize=(4, 4))
gs = gridspec.GridSpec(4, 4) gs = gridspec.GridSpec(4, 4)
@ -36,104 +50,140 @@ def plot(samples):
for i, sample in enumerate(samples): for i, sample in enumerate(samples):
ax = plt.subplot(gs[i]) ax = plt.subplot(gs[i])
plt.axis('off') plt.axis("off")
ax.set_xticklabels([]) ax.set_xticklabels([])
ax.set_yticklabels([]) ax.set_yticklabels([])
ax.set_aspect('equal') ax.set_aspect("equal")
plt.imshow(sample.reshape(28, 28), cmap='Greys_r') plt.imshow(sample.reshape(28, 28), cmap="Greys_r")
return fig return fig
# 1. Load Data and declare hyper # 1. Load Data and declare hyper
print('--------- Load Data ----------') print("--------- Load Data ----------")
mnist = input_data.read_data_sets('MNIST_data', one_hot=False) mnist = input_data.read_data_sets("MNIST_data", one_hot=False)
temp = mnist.test temp = mnist.test
images, labels = temp.images, temp.labels images, labels = temp.images, temp.labels
images, labels = shuffle(np.asarray(images),np.asarray(labels)) images, labels = shuffle(np.asarray(images), np.asarray(labels))
num_epoch = 10 num_epoch = 10
learing_rate = 0.00009 learing_rate = 0.00009
G_input = 100 G_input = 100
hidden_input,hidden_input2,hidden_input3 = 128,256,346 hidden_input, hidden_input2, hidden_input3 = 128, 256, 346
hidden_input4,hidden_input5,hidden_input6 = 480,560,686 hidden_input4, hidden_input5, hidden_input6 = 480, 560, 686
print("--------- Declare Hyper Parameters ----------")
print('--------- Declare Hyper Parameters ----------')
# 2. Declare Weights # 2. Declare Weights
D_W1 = np.random.normal(size=(784,hidden_input),scale=(1. / np.sqrt(784 / 2.))) *0.002 D_W1 = (
np.random.normal(size=(784, hidden_input), scale=(1.0 / np.sqrt(784 / 2.0))) * 0.002
)
# D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 # D_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
D_b1 = np.zeros(hidden_input) D_b1 = np.zeros(hidden_input)
D_W2 = np.random.normal(size=(hidden_input,1),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002 D_W2 = (
np.random.normal(size=(hidden_input, 1), scale=(1.0 / np.sqrt(hidden_input / 2.0)))
* 0.002
)
# D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002 # D_b2 = np.random.normal(size=(1),scale=(1. / np.sqrt(1 / 2.))) *0.002
D_b2 = np.zeros(1) D_b2 = np.zeros(1)
G_W1 = np.random.normal(size=(G_input,hidden_input),scale=(1. / np.sqrt(G_input / 2.))) *0.002 G_W1 = (
np.random.normal(size=(G_input, hidden_input), scale=(1.0 / np.sqrt(G_input / 2.0)))
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b1 = np.zeros(hidden_input) G_b1 = np.zeros(hidden_input)
G_W2 = np.random.normal(size=(hidden_input,hidden_input2),scale=(1. / np.sqrt(hidden_input / 2.))) *0.002 G_W2 = (
np.random.normal(
size=(hidden_input, hidden_input2), scale=(1.0 / np.sqrt(hidden_input / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b2 = np.zeros(hidden_input2) G_b2 = np.zeros(hidden_input2)
G_W3 = np.random.normal(size=(hidden_input2,hidden_input3),scale=(1. / np.sqrt(hidden_input2 / 2.))) *0.002 G_W3 = (
np.random.normal(
size=(hidden_input2, hidden_input3), scale=(1.0 / np.sqrt(hidden_input2 / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b3 = np.zeros(hidden_input3) G_b3 = np.zeros(hidden_input3)
G_W4 = np.random.normal(size=(hidden_input3,hidden_input4),scale=(1. / np.sqrt(hidden_input3 / 2.))) *0.002 G_W4 = (
np.random.normal(
size=(hidden_input3, hidden_input4), scale=(1.0 / np.sqrt(hidden_input3 / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b4 = np.zeros(hidden_input4) G_b4 = np.zeros(hidden_input4)
G_W5 = np.random.normal(size=(hidden_input4,hidden_input5),scale=(1. / np.sqrt(hidden_input4 / 2.))) *0.002 G_W5 = (
np.random.normal(
size=(hidden_input4, hidden_input5), scale=(1.0 / np.sqrt(hidden_input4 / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b5 = np.zeros(hidden_input5) G_b5 = np.zeros(hidden_input5)
G_W6 = np.random.normal(size=(hidden_input5,hidden_input6),scale=(1. / np.sqrt(hidden_input5 / 2.))) *0.002 G_W6 = (
np.random.normal(
size=(hidden_input5, hidden_input6), scale=(1.0 / np.sqrt(hidden_input5 / 2.0))
)
* 0.002
)
# G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002 # G_b1 = np.random.normal(size=(128),scale=(1. / np.sqrt(128 / 2.))) *0.002
G_b6 = np.zeros(hidden_input6) G_b6 = np.zeros(hidden_input6)
G_W7 = np.random.normal(size=(hidden_input6,784),scale=(1. / np.sqrt(hidden_input6 / 2.))) *0.002 G_W7 = (
np.random.normal(
size=(hidden_input6, 784), scale=(1.0 / np.sqrt(hidden_input6 / 2.0))
)
* 0.002
)
# G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002 # G_b2 = np.random.normal(size=(784),scale=(1. / np.sqrt(784 / 2.))) *0.002
G_b7 = np.zeros(784) G_b7 = np.zeros(784)
# 3. For Adam Optimzier # 3. For Adam Optimzier
v1,m1 = 0,0 v1, m1 = 0, 0
v2,m2 = 0,0 v2, m2 = 0, 0
v3,m3 = 0,0 v3, m3 = 0, 0
v4,m4 = 0,0 v4, m4 = 0, 0
v5,m5 = 0,0 v5, m5 = 0, 0
v6,m6 = 0,0 v6, m6 = 0, 0
v7,m7 = 0,0 v7, m7 = 0, 0
v8,m8 = 0,0 v8, m8 = 0, 0
v9,m9 = 0,0 v9, m9 = 0, 0
v10,m10 = 0,0 v10, m10 = 0, 0
v11,m11 = 0,0 v11, m11 = 0, 0
v12,m12 = 0,0 v12, m12 = 0, 0
v13,m13 = 0,0 v13, m13 = 0, 0
v14,m14 = 0,0 v14, m14 = 0, 0
v15,m15 = 0,0 v15, m15 = 0, 0
v16,m16 = 0,0 v16, m16 = 0, 0
v17,m17 = 0,0 v17, m17 = 0, 0
v18,m18 = 0,0 v18, m18 = 0, 0
beta_1,beta_2,eps = 0.9,0.999,0.00000001 beta_1, beta_2, eps = 0.9, 0.999, 0.00000001
print('--------- Started Training ----------') print("--------- Started Training ----------")
for iter in range(num_epoch): for iter in range(num_epoch):
random_int = np.random.randint(len(images) - 5) random_int = np.random.randint(len(images) - 5)
current_image = np.expand_dims(images[random_int],axis=0) current_image = np.expand_dims(images[random_int], axis=0)
# Func: Generate The first Fake Data # Func: Generate The first Fake Data
Z = np.random.uniform(-1., 1., size=[1, G_input]) Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
Gl1 = Z.dot(G_W1) + G_b1 Gl1 = Z.dot(G_W1) + G_b1
Gl1A = arctan(Gl1) Gl1A = arctan(Gl1)
Gl2 = Gl1A.dot(G_W2) + G_b2 Gl2 = Gl1A.dot(G_W2) + G_b2
@ -164,38 +214,38 @@ for iter in range(num_epoch):
Dl2_fA = log(Dl2_f) Dl2_fA = log(Dl2_f)
# Func: Cost D # Func: Cost D
D_cost = -np.log(Dl2_rA) + np.log(1.0- Dl2_fA) D_cost = -np.log(Dl2_rA) + np.log(1.0 - Dl2_fA)
# Func: Gradient # Func: Gradient
grad_f_w2_part_1 = 1/(1.0- Dl2_fA) grad_f_w2_part_1 = 1 / (1.0 - Dl2_fA)
grad_f_w2_part_2 = d_log(Dl2_f) grad_f_w2_part_2 = d_log(Dl2_f)
grad_f_w2_part_3 = Dl1_fA grad_f_w2_part_3 = Dl1_fA
grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2) grad_f_w2 = grad_f_w2_part_3.T.dot(grad_f_w2_part_1 * grad_f_w2_part_2)
grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2 grad_f_b2 = grad_f_w2_part_1 * grad_f_w2_part_2
grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T) grad_f_w1_part_1 = (grad_f_w2_part_1 * grad_f_w2_part_2).dot(D_W2.T)
grad_f_w1_part_2 = d_ReLu(Dl1_f) grad_f_w1_part_2 = d_ReLu(Dl1_f)
grad_f_w1_part_3 = current_fake_data grad_f_w1_part_3 = current_fake_data
grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2) grad_f_w1 = grad_f_w1_part_3.T.dot(grad_f_w1_part_1 * grad_f_w1_part_2)
grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2 grad_f_b1 = grad_f_w1_part_1 * grad_f_w1_part_2
grad_r_w2_part_1 = - 1/Dl2_rA grad_r_w2_part_1 = -1 / Dl2_rA
grad_r_w2_part_2 = d_log(Dl2_r) grad_r_w2_part_2 = d_log(Dl2_r)
grad_r_w2_part_3 = Dl1_rA grad_r_w2_part_3 = Dl1_rA
grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2) grad_r_w2 = grad_r_w2_part_3.T.dot(grad_r_w2_part_1 * grad_r_w2_part_2)
grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2 grad_r_b2 = grad_r_w2_part_1 * grad_r_w2_part_2
grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T) grad_r_w1_part_1 = (grad_r_w2_part_1 * grad_r_w2_part_2).dot(D_W2.T)
grad_r_w1_part_2 = d_ReLu(Dl1_r) grad_r_w1_part_2 = d_ReLu(Dl1_r)
grad_r_w1_part_3 = current_image grad_r_w1_part_3 = current_image
grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2) grad_r_w1 = grad_r_w1_part_3.T.dot(grad_r_w1_part_1 * grad_r_w1_part_2)
grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2 grad_r_b1 = grad_r_w1_part_1 * grad_r_w1_part_2
grad_w1 =grad_f_w1 + grad_r_w1 grad_w1 = grad_f_w1 + grad_r_w1
grad_b1 =grad_f_b1 + grad_r_b1 grad_b1 = grad_f_b1 + grad_r_b1
grad_w2 =grad_f_w2 + grad_r_w2 grad_w2 = grad_f_w2 + grad_r_w2
grad_b2 =grad_f_b2 + grad_r_b2 grad_b2 = grad_f_b2 + grad_r_b2
# ---- Update Gradient ---- # ---- Update Gradient ----
m1 = beta_1 * m1 + (1 - beta_1) * grad_w1 m1 = beta_1 * m1 + (1 - beta_1) * grad_w1
@ -210,14 +260,22 @@ for iter in range(num_epoch):
m4 = beta_1 * m4 + (1 - beta_1) * grad_b2 m4 = beta_1 * m4 + (1 - beta_1) * grad_b2
v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2 v4 = beta_2 * v4 + (1 - beta_2) * grad_b2 ** 2
D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 /(1-beta_2) ) + eps)) * (m1/(1-beta_1)) D_W1 = D_W1 - (learing_rate / (np.sqrt(v1 / (1 - beta_2)) + eps)) * (
D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 /(1-beta_2) ) + eps)) * (m2/(1-beta_1)) m1 / (1 - beta_1)
)
D_b1 = D_b1 - (learing_rate / (np.sqrt(v2 / (1 - beta_2)) + eps)) * (
m2 / (1 - beta_1)
)
D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 /(1-beta_2) ) + eps)) * (m3/(1-beta_1)) D_W2 = D_W2 - (learing_rate / (np.sqrt(v3 / (1 - beta_2)) + eps)) * (
D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 /(1-beta_2) ) + eps)) * (m4/(1-beta_1)) m3 / (1 - beta_1)
)
D_b2 = D_b2 - (learing_rate / (np.sqrt(v4 / (1 - beta_2)) + eps)) * (
m4 / (1 - beta_1)
)
# Func: Forward Feed for G # Func: Forward Feed for G
Z = np.random.uniform(-1., 1., size=[1, G_input]) Z = np.random.uniform(-1.0, 1.0, size=[1, G_input])
Gl1 = Z.dot(G_W1) + G_b1 Gl1 = Z.dot(G_W1) + G_b1
Gl1A = arctan(Gl1) Gl1A = arctan(Gl1)
Gl2 = Gl1A.dot(G_W2) + G_b2 Gl2 = Gl1A.dot(G_W2) + G_b2
@ -244,7 +302,9 @@ for iter in range(num_epoch):
G_cost = -np.log(Dl2_A) G_cost = -np.log(Dl2_A)
# Func: Gradient # Func: Gradient
grad_G_w7_part_1 = ((-1/Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(D_W1.T) grad_G_w7_part_1 = ((-1 / Dl2_A) * d_log(Dl2).dot(D_W2.T) * (d_ReLu(Dl1))).dot(
D_W1.T
)
grad_G_w7_part_2 = d_log(Gl7) grad_G_w7_part_2 = d_log(Gl7)
grad_G_w7_part_3 = Gl6A grad_G_w7_part_3 = Gl6A
grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1) grad_G_w7 = grad_G_w7_part_3.T.dot(grad_G_w7_part_1 * grad_G_w7_part_1)
@ -254,31 +314,31 @@ for iter in range(num_epoch):
grad_G_w6_part_2 = d_ReLu(Gl6) grad_G_w6_part_2 = d_ReLu(Gl6)
grad_G_w6_part_3 = Gl5A grad_G_w6_part_3 = Gl5A
grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2) grad_G_w6 = grad_G_w6_part_3.T.dot(grad_G_w6_part_1 * grad_G_w6_part_2)
grad_G_b6 = (grad_G_w6_part_1 * grad_G_w6_part_2) grad_G_b6 = grad_G_w6_part_1 * grad_G_w6_part_2
grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T) grad_G_w5_part_1 = (grad_G_w6_part_1 * grad_G_w6_part_2).dot(G_W6.T)
grad_G_w5_part_2 = d_tanh(Gl5) grad_G_w5_part_2 = d_tanh(Gl5)
grad_G_w5_part_3 = Gl4A grad_G_w5_part_3 = Gl4A
grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2) grad_G_w5 = grad_G_w5_part_3.T.dot(grad_G_w5_part_1 * grad_G_w5_part_2)
grad_G_b5 = (grad_G_w5_part_1 * grad_G_w5_part_2) grad_G_b5 = grad_G_w5_part_1 * grad_G_w5_part_2
grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T) grad_G_w4_part_1 = (grad_G_w5_part_1 * grad_G_w5_part_2).dot(G_W5.T)
grad_G_w4_part_2 = d_ReLu(Gl4) grad_G_w4_part_2 = d_ReLu(Gl4)
grad_G_w4_part_3 = Gl3A grad_G_w4_part_3 = Gl3A
grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2) grad_G_w4 = grad_G_w4_part_3.T.dot(grad_G_w4_part_1 * grad_G_w4_part_2)
grad_G_b4 = (grad_G_w4_part_1 * grad_G_w4_part_2) grad_G_b4 = grad_G_w4_part_1 * grad_G_w4_part_2
grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T) grad_G_w3_part_1 = (grad_G_w4_part_1 * grad_G_w4_part_2).dot(G_W4.T)
grad_G_w3_part_2 = d_arctan(Gl3) grad_G_w3_part_2 = d_arctan(Gl3)
grad_G_w3_part_3 = Gl2A grad_G_w3_part_3 = Gl2A
grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2) grad_G_w3 = grad_G_w3_part_3.T.dot(grad_G_w3_part_1 * grad_G_w3_part_2)
grad_G_b3 = (grad_G_w3_part_1 * grad_G_w3_part_2) grad_G_b3 = grad_G_w3_part_1 * grad_G_w3_part_2
grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T) grad_G_w2_part_1 = (grad_G_w3_part_1 * grad_G_w3_part_2).dot(G_W3.T)
grad_G_w2_part_2 = d_ReLu(Gl2) grad_G_w2_part_2 = d_ReLu(Gl2)
grad_G_w2_part_3 = Gl1A grad_G_w2_part_3 = Gl1A
grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2) grad_G_w2 = grad_G_w2_part_3.T.dot(grad_G_w2_part_1 * grad_G_w2_part_2)
grad_G_b2 = (grad_G_w2_part_1 * grad_G_w2_part_2) grad_G_b2 = grad_G_w2_part_1 * grad_G_w2_part_2
grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T) grad_G_w1_part_1 = (grad_G_w2_part_1 * grad_G_w2_part_2).dot(G_W2.T)
grad_G_w1_part_2 = d_arctan(Gl1) grad_G_w1_part_2 = d_arctan(Gl1)
@ -329,29 +389,57 @@ for iter in range(num_epoch):
m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7 m18 = beta_1 * m18 + (1 - beta_1) * grad_G_b7
v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2 v18 = beta_2 * v18 + (1 - beta_2) * grad_G_b7 ** 2
G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 /(1-beta_2) ) + eps)) * (m5/(1-beta_1)) G_W1 = G_W1 - (learing_rate / (np.sqrt(v5 / (1 - beta_2)) + eps)) * (
G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 /(1-beta_2) ) + eps)) * (m6/(1-beta_1)) m5 / (1 - beta_1)
)
G_b1 = G_b1 - (learing_rate / (np.sqrt(v6 / (1 - beta_2)) + eps)) * (
m6 / (1 - beta_1)
)
G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 /(1-beta_2) ) + eps)) * (m7/(1-beta_1)) G_W2 = G_W2 - (learing_rate / (np.sqrt(v7 / (1 - beta_2)) + eps)) * (
G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 /(1-beta_2) ) + eps)) * (m8/(1-beta_1)) m7 / (1 - beta_1)
)
G_b2 = G_b2 - (learing_rate / (np.sqrt(v8 / (1 - beta_2)) + eps)) * (
m8 / (1 - beta_1)
)
G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 /(1-beta_2) ) + eps)) * (m9/(1-beta_1)) G_W3 = G_W3 - (learing_rate / (np.sqrt(v9 / (1 - beta_2)) + eps)) * (
G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 /(1-beta_2) ) + eps)) * (m10/(1-beta_1)) m9 / (1 - beta_1)
)
G_b3 = G_b3 - (learing_rate / (np.sqrt(v10 / (1 - beta_2)) + eps)) * (
m10 / (1 - beta_1)
)
G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 /(1-beta_2) ) + eps)) * (m11/(1-beta_1)) G_W4 = G_W4 - (learing_rate / (np.sqrt(v11 / (1 - beta_2)) + eps)) * (
G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 /(1-beta_2) ) + eps)) * (m12/(1-beta_1)) m11 / (1 - beta_1)
)
G_b4 = G_b4 - (learing_rate / (np.sqrt(v12 / (1 - beta_2)) + eps)) * (
m12 / (1 - beta_1)
)
G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 /(1-beta_2) ) + eps)) * (m13/(1-beta_1)) G_W5 = G_W5 - (learing_rate / (np.sqrt(v13 / (1 - beta_2)) + eps)) * (
G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 /(1-beta_2) ) + eps)) * (m14/(1-beta_1)) m13 / (1 - beta_1)
)
G_b5 = G_b5 - (learing_rate / (np.sqrt(v14 / (1 - beta_2)) + eps)) * (
m14 / (1 - beta_1)
)
G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 /(1-beta_2) ) + eps)) * (m15/(1-beta_1)) G_W6 = G_W6 - (learing_rate / (np.sqrt(v15 / (1 - beta_2)) + eps)) * (
G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 /(1-beta_2) ) + eps)) * (m16/(1-beta_1)) m15 / (1 - beta_1)
)
G_b6 = G_b6 - (learing_rate / (np.sqrt(v16 / (1 - beta_2)) + eps)) * (
m16 / (1 - beta_1)
)
G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 /(1-beta_2) ) + eps)) * (m17/(1-beta_1)) G_W7 = G_W7 - (learing_rate / (np.sqrt(v17 / (1 - beta_2)) + eps)) * (
G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 /(1-beta_2) ) + eps)) * (m18/(1-beta_1)) m17 / (1 - beta_1)
)
G_b7 = G_b7 - (learing_rate / (np.sqrt(v18 / (1 - beta_2)) + eps)) * (
m18 / (1 - beta_1)
)
# --- Print Error ---- # --- Print Error ----
#print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') # print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r')
if iter == 0: if iter == 0:
learing_rate = learing_rate * 0.01 learing_rate = learing_rate * 0.01
@ -359,12 +447,20 @@ for iter in range(num_epoch):
learing_rate = learing_rate * 0.01 learing_rate = learing_rate * 0.01
# ---- Print to Out put ---- # ---- Print to Out put ----
if iter%10 == 0: if iter % 10 == 0:
print("Current Iter: ",iter, " Current D cost:",D_cost, " Current G cost: ", G_cost,end='\r') print(
print('--------- Show Example Result See Tab Above ----------') "Current Iter: ",
print('--------- Wait for the image to load ---------') iter,
Z = np.random.uniform(-1., 1., size=[16, G_input]) " Current D cost:",
D_cost,
" Current G cost: ",
G_cost,
end="\r",
)
print("--------- Show Example Result See Tab Above ----------")
print("--------- Wait for the image to load ---------")
Z = np.random.uniform(-1.0, 1.0, size=[16, G_input])
Gl1 = Z.dot(G_W1) + G_b1 Gl1 = Z.dot(G_W1) + G_b1
Gl1A = arctan(Gl1) Gl1A = arctan(Gl1)
@ -384,8 +480,19 @@ for iter in range(num_epoch):
current_fake_data = log(Gl7) current_fake_data = log(Gl7)
fig = plot(current_fake_data) fig = plot(current_fake_data)
fig.savefig('Click_Me_{}.png'.format(str(iter).zfill(3)+"_Ginput_"+str(G_input)+ \ fig.savefig(
"_hiddenone"+str(hidden_input) + "_hiddentwo"+str(hidden_input2) + "_LR_" + str(learing_rate) "Click_Me_{}.png".format(
), bbox_inches='tight') str(iter).zfill(3)
#for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021 + "_Ginput_"
+ str(G_input)
+ "_hiddenone"
+ str(hidden_input)
+ "_hiddentwo"
+ str(hidden_input2)
+ "_LR_"
+ str(learing_rate)
),
bbox_inches="tight",
)
# for complete explanation visit https://towardsdatascience.com/only-numpy-implementing-gan-general-adversarial-networks-and-adam-optimizer-using-numpy-with-2a7e4e032021
# -- end code -- # -- end code --

View File

@ -34,20 +34,20 @@ from tensorflow.python.framework import random_seed
from tensorflow.python.platform import gfile from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated from tensorflow.python.util.deprecation import deprecated
_Datasets = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) _Datasets = collections.namedtuple("_Datasets", ["train", "validation", "test"])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/ # CVDF mirror of http://yann.lecun.com/exdb/mnist/
DEFAULT_SOURCE_URL = 'https://storage.googleapis.com/cvdf-datasets/mnist/' DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
def _read32(bytestream): def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>') dt = numpy.dtype(numpy.uint32).newbyteorder(">")
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
@deprecated(None, 'Please use tf.data to implement this functionality.') @deprecated(None, "Please use tf.data to implement this functionality.")
def _extract_images(f): def _extract_images(f):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]. """Extract the images into a 4D uint8 numpy array [index, y, x, depth].
Args: Args:
f: A file object that can be passed into a gzip reader. f: A file object that can be passed into a gzip reader.
@ -59,34 +59,35 @@ def _extract_images(f):
ValueError: If the bytestream does not start with 2051. ValueError: If the bytestream does not start with 2051.
""" """
print('Extracting', f.name) print("Extracting", f.name)
with gzip.GzipFile(fileobj=f) as bytestream: with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream) magic = _read32(bytestream)
if magic != 2051: if magic != 2051:
raise ValueError('Invalid magic number %d in MNIST image file: %s' % raise ValueError(
(magic, f.name)) "Invalid magic number %d in MNIST image file: %s" % (magic, f.name)
num_images = _read32(bytestream) )
rows = _read32(bytestream) num_images = _read32(bytestream)
cols = _read32(bytestream) rows = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images) cols = _read32(bytestream)
data = numpy.frombuffer(buf, dtype=numpy.uint8) buf = bytestream.read(rows * cols * num_images)
data = data.reshape(num_images, rows, cols, 1) data = numpy.frombuffer(buf, dtype=numpy.uint8)
return data data = data.reshape(num_images, rows, cols, 1)
return data
@deprecated(None, 'Please use tf.one_hot on tensors.') @deprecated(None, "Please use tf.one_hot on tensors.")
def _dense_to_one_hot(labels_dense, num_classes): def _dense_to_one_hot(labels_dense, num_classes):
"""Convert class labels from scalars to one-hot vectors.""" """Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0] num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes)) labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1 labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot return labels_one_hot
@deprecated(None, 'Please use tf.data to implement this functionality.') @deprecated(None, "Please use tf.data to implement this functionality.")
def _extract_labels(f, one_hot=False, num_classes=10): def _extract_labels(f, one_hot=False, num_classes=10):
"""Extract the labels into a 1D uint8 numpy array [index]. """Extract the labels into a 1D uint8 numpy array [index].
Args: Args:
f: A file object that can be passed into a gzip reader. f: A file object that can be passed into a gzip reader.
@ -99,37 +100,43 @@ def _extract_labels(f, one_hot=False, num_classes=10):
Raises: Raises:
ValueError: If the bystream doesn't start with 2049. ValueError: If the bystream doesn't start with 2049.
""" """
print('Extracting', f.name) print("Extracting", f.name)
with gzip.GzipFile(fileobj=f) as bytestream: with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream) magic = _read32(bytestream)
if magic != 2049: if magic != 2049:
raise ValueError('Invalid magic number %d in MNIST label file: %s' % raise ValueError(
(magic, f.name)) "Invalid magic number %d in MNIST label file: %s" % (magic, f.name)
num_items = _read32(bytestream) )
buf = bytestream.read(num_items) num_items = _read32(bytestream)
labels = numpy.frombuffer(buf, dtype=numpy.uint8) buf = bytestream.read(num_items)
if one_hot: labels = numpy.frombuffer(buf, dtype=numpy.uint8)
return _dense_to_one_hot(labels, num_classes) if one_hot:
return labels return _dense_to_one_hot(labels, num_classes)
return labels
class _DataSet(object): class _DataSet(object):
"""Container class for a _DataSet (deprecated). """Container class for a _DataSet (deprecated).
THIS CLASS IS DEPRECATED. THIS CLASS IS DEPRECATED.
""" """
@deprecated(None, 'Please use alternatives such as official/mnist/_DataSet.py' @deprecated(
' from tensorflow/models.') None,
def __init__(self, "Please use alternatives such as official/mnist/_DataSet.py"
images, " from tensorflow/models.",
labels, )
fake_data=False, def __init__(
one_hot=False, self,
dtype=dtypes.float32, images,
reshape=True, labels,
seed=None): fake_data=False,
"""Construct a _DataSet. one_hot=False,
dtype=dtypes.float32,
reshape=True,
seed=None,
):
"""Construct a _DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
@ -146,101 +153,105 @@ class _DataSet(object):
reshape: Bool. If True returned images are returned flattened to vectors. reshape: Bool. If True returned images are returned flattened to vectors.
seed: The random seed to use. seed: The random seed to use.
""" """
seed1, seed2 = random_seed.get_seed(seed) seed1, seed2 = random_seed.get_seed(seed)
# If op level seed is not set, use whatever graph level seed is returned # If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seed1 if seed is None else seed2) numpy.random.seed(seed1 if seed is None else seed2)
dtype = dtypes.as_dtype(dtype).base_dtype dtype = dtypes.as_dtype(dtype).base_dtype
if dtype not in (dtypes.uint8, dtypes.float32): if dtype not in (dtypes.uint8, dtypes.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype)
dtype) if fake_data:
if fake_data: self._num_examples = 10000
self._num_examples = 10000 self.one_hot = one_hot
self.one_hot = one_hot else:
else: assert (
assert images.shape[0] == labels.shape[0], ( images.shape[0] == labels.shape[0]
'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) ), "images.shape: %s labels.shape: %s" % (images.shape, labels.shape)
self._num_examples = images.shape[0] self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth] # Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1) # to [num examples, rows*columns] (assuming depth == 1)
if reshape: if reshape:
assert images.shape[3] == 1 assert images.shape[3] == 1
images = images.reshape(images.shape[0], images = images.reshape(
images.shape[1] * images.shape[2]) images.shape[0], images.shape[1] * images.shape[2]
if dtype == dtypes.float32: )
# Convert from [0, 255] -> [0.0, 1.0]. if dtype == dtypes.float32:
images = images.astype(numpy.float32) # Convert from [0, 255] -> [0.0, 1.0].
images = numpy.multiply(images, 1.0 / 255.0) images = images.astype(numpy.float32)
self._images = images images = numpy.multiply(images, 1.0 / 255.0)
self._labels = labels self._images = images
self._epochs_completed = 0 self._labels = labels
self._index_in_epoch = 0 self._epochs_completed = 0
self._index_in_epoch = 0
@property @property
def images(self): def images(self):
return self._images return self._images
@property @property
def labels(self): def labels(self):
return self._labels return self._labels
@property @property
def num_examples(self): def num_examples(self):
return self._num_examples return self._num_examples
@property @property
def epochs_completed(self): def epochs_completed(self):
return self._epochs_completed return self._epochs_completed
def next_batch(self, batch_size, fake_data=False, shuffle=True): def next_batch(self, batch_size, fake_data=False, shuffle=True):
"""Return the next `batch_size` examples from this data set.""" """Return the next `batch_size` examples from this data set."""
if fake_data: if fake_data:
fake_image = [1] * 784 fake_image = [1] * 784
if self.one_hot: if self.one_hot:
fake_label = [1] + [0] * 9 fake_label = [1] + [0] * 9
else: else:
fake_label = 0 fake_label = 0
return [fake_image for _ in xrange(batch_size) return (
], [fake_label for _ in xrange(batch_size)] [fake_image for _ in xrange(batch_size)],
start = self._index_in_epoch [fake_label for _ in xrange(batch_size)],
# Shuffle for the first epoch )
if self._epochs_completed == 0 and start == 0 and shuffle: start = self._index_in_epoch
perm0 = numpy.arange(self._num_examples) # Shuffle for the first epoch
numpy.random.shuffle(perm0) if self._epochs_completed == 0 and start == 0 and shuffle:
self._images = self.images[perm0] perm0 = numpy.arange(self._num_examples)
self._labels = self.labels[perm0] numpy.random.shuffle(perm0)
# Go to the next epoch self._images = self.images[perm0]
if start + batch_size > self._num_examples: self._labels = self.labels[perm0]
# Finished epoch # Go to the next epoch
self._epochs_completed += 1 if start + batch_size > self._num_examples:
# Get the rest examples in this epoch # Finished epoch
rest_num_examples = self._num_examples - start self._epochs_completed += 1
images_rest_part = self._images[start:self._num_examples] # Get the rest examples in this epoch
labels_rest_part = self._labels[start:self._num_examples] rest_num_examples = self._num_examples - start
# Shuffle the data images_rest_part = self._images[start : self._num_examples]
if shuffle: labels_rest_part = self._labels[start : self._num_examples]
perm = numpy.arange(self._num_examples) # Shuffle the data
numpy.random.shuffle(perm) if shuffle:
self._images = self.images[perm] perm = numpy.arange(self._num_examples)
self._labels = self.labels[perm] numpy.random.shuffle(perm)
# Start next epoch self._images = self.images[perm]
start = 0 self._labels = self.labels[perm]
self._index_in_epoch = batch_size - rest_num_examples # Start next epoch
end = self._index_in_epoch start = 0
images_new_part = self._images[start:end] self._index_in_epoch = batch_size - rest_num_examples
labels_new_part = self._labels[start:end] end = self._index_in_epoch
return numpy.concatenate((images_rest_part, images_new_part), images_new_part = self._images[start:end]
axis=0), numpy.concatenate( labels_new_part = self._labels[start:end]
(labels_rest_part, labels_new_part), axis=0) return (
else: numpy.concatenate((images_rest_part, images_new_part), axis=0),
self._index_in_epoch += batch_size numpy.concatenate((labels_rest_part, labels_new_part), axis=0),
end = self._index_in_epoch )
return self._images[start:end], self._labels[start:end] else:
self._index_in_epoch += batch_size
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(None, 'Please write your own downloading logic.') @deprecated(None, "Please write your own downloading logic.")
def _maybe_download(filename, work_directory, source_url): def _maybe_download(filename, work_directory, source_url):
"""Download the data from source url, unless it's already here. """Download the data from source url, unless it's already here.
Args: Args:
filename: string, name of the file in the directory. filename: string, name of the file in the directory.
@ -250,83 +261,90 @@ def _maybe_download(filename, work_directory, source_url):
Returns: Returns:
Path to resulting file. Path to resulting file.
""" """
if not gfile.Exists(work_directory): if not gfile.Exists(work_directory):
gfile.MakeDirs(work_directory) gfile.MakeDirs(work_directory)
filepath = os.path.join(work_directory, filename) filepath = os.path.join(work_directory, filename)
if not gfile.Exists(filepath): if not gfile.Exists(filepath):
urllib.request.urlretrieve(source_url, filepath) urllib.request.urlretrieve(source_url, filepath)
with gfile.GFile(filepath) as f: with gfile.GFile(filepath) as f:
size = f.size() size = f.size()
print('Successfully downloaded', filename, size, 'bytes.') print("Successfully downloaded", filename, size, "bytes.")
return filepath return filepath
@deprecated(None, 'Please use alternatives such as:' @deprecated(
' tensorflow_datasets.load(\'mnist\')') None, "Please use alternatives such as:" " tensorflow_datasets.load('mnist')"
def read_data_sets(train_dir, )
fake_data=False, def read_data_sets(
one_hot=False, train_dir,
dtype=dtypes.float32, fake_data=False,
reshape=True, one_hot=False,
validation_size=5000, dtype=dtypes.float32,
seed=None, reshape=True,
source_url=DEFAULT_SOURCE_URL): validation_size=5000,
if fake_data: seed=None,
source_url=DEFAULT_SOURCE_URL,
):
if fake_data:
def fake(): def fake():
return _DataSet([], [], return _DataSet(
fake_data=True, [], [], fake_data=True, one_hot=one_hot, dtype=dtype, seed=seed
one_hot=one_hot, )
dtype=dtype,
seed=seed) train = fake()
validation = fake()
test = fake()
return _Datasets(train=train, validation=validation, test=test)
if not source_url: # empty string check
source_url = DEFAULT_SOURCE_URL
train_images_file = "train-images-idx3-ubyte.gz"
train_labels_file = "train-labels-idx1-ubyte.gz"
test_images_file = "t10k-images-idx3-ubyte.gz"
test_labels_file = "t10k-labels-idx1-ubyte.gz"
local_file = _maybe_download(
train_images_file, train_dir, source_url + train_images_file
)
with gfile.Open(local_file, "rb") as f:
train_images = _extract_images(f)
local_file = _maybe_download(
train_labels_file, train_dir, source_url + train_labels_file
)
with gfile.Open(local_file, "rb") as f:
train_labels = _extract_labels(f, one_hot=one_hot)
local_file = _maybe_download(
test_images_file, train_dir, source_url + test_images_file
)
with gfile.Open(local_file, "rb") as f:
test_images = _extract_images(f)
local_file = _maybe_download(
test_labels_file, train_dir, source_url + test_labels_file
)
with gfile.Open(local_file, "rb") as f:
test_labels = _extract_labels(f, one_hot=one_hot)
if not 0 <= validation_size <= len(train_images):
raise ValueError(
"Validation size should be between 0 and {}. Received: {}.".format(
len(train_images), validation_size
)
)
validation_images = train_images[:validation_size]
validation_labels = train_labels[:validation_size]
train_images = train_images[validation_size:]
train_labels = train_labels[validation_size:]
options = dict(dtype=dtype, reshape=reshape, seed=seed)
train = _DataSet(train_images, train_labels, **options)
validation = _DataSet(validation_images, validation_labels, **options)
test = _DataSet(test_images, test_labels, **options)
train = fake()
validation = fake()
test = fake()
return _Datasets(train=train, validation=validation, test=test) return _Datasets(train=train, validation=validation, test=test)
if not source_url: # empty string check
source_url = DEFAULT_SOURCE_URL
train_images_file = 'train-images-idx3-ubyte.gz'
train_labels_file = 'train-labels-idx1-ubyte.gz'
test_images_file = 't10k-images-idx3-ubyte.gz'
test_labels_file = 't10k-labels-idx1-ubyte.gz'
local_file = _maybe_download(train_images_file, train_dir,
source_url + train_images_file)
with gfile.Open(local_file, 'rb') as f:
train_images = _extract_images(f)
local_file = _maybe_download(train_labels_file, train_dir,
source_url + train_labels_file)
with gfile.Open(local_file, 'rb') as f:
train_labels = _extract_labels(f, one_hot=one_hot)
local_file = _maybe_download(test_images_file, train_dir,
source_url + test_images_file)
with gfile.Open(local_file, 'rb') as f:
test_images = _extract_images(f)
local_file = _maybe_download(test_labels_file, train_dir,
source_url + test_labels_file)
with gfile.Open(local_file, 'rb') as f:
test_labels = _extract_labels(f, one_hot=one_hot)
if not 0 <= validation_size <= len(train_images):
raise ValueError(
'Validation size should be between 0 and {}. Received: {}.'.format(
len(train_images), validation_size))
validation_images = train_images[:validation_size]
validation_labels = train_labels[:validation_size]
train_images = train_images[validation_size:]
train_labels = train_labels[validation_size:]
options = dict(dtype=dtype, reshape=reshape, seed=seed)
train = _DataSet(train_images, train_labels, **options)
validation = _DataSet(validation_images, validation_labels, **options)
test = _DataSet(test_images, test_labels, **options)
return _Datasets(train=train, validation=validation, test=test)

View File

@ -2,12 +2,13 @@ from abc import abstractmethod
import sys import sys
from collections import deque from collections import deque
class LRUCache: class LRUCache:
""" Page Replacement Algorithm, Least Recently Used (LRU) Caching.""" """ Page Replacement Algorithm, Least Recently Used (LRU) Caching."""
dq_store = object() # Cache store of keys dq_store = object() # Cache store of keys
key_reference_map = object() # References of the keys in cache key_reference_map = object() # References of the keys in cache
_MAX_CAPACITY: int = 10 # Maximum capacity of cache _MAX_CAPACITY: int = 10 # Maximum capacity of cache
@abstractmethod @abstractmethod
def __init__(self, n: int): def __init__(self, n: int):
@ -19,7 +20,7 @@ class LRUCache:
if not n: if not n:
LRUCache._MAX_CAPACITY = sys.maxsize LRUCache._MAX_CAPACITY = sys.maxsize
elif n < 0: elif n < 0:
raise ValueError('n should be an integer greater than 0.') raise ValueError("n should be an integer greater than 0.")
else: else:
LRUCache._MAX_CAPACITY = n LRUCache._MAX_CAPACITY = n
@ -51,6 +52,7 @@ class LRUCache:
for k in self.dq_store: for k in self.dq_store:
print(k) print(k)
if __name__ == "__main__": if __name__ == "__main__":
lru_cache = LRUCache(4) lru_cache = LRUCache(4)
lru_cache.refer(1) lru_cache.refer(1)

View File

@ -27,7 +27,7 @@ def solution(n):
""" """
fact = 1 fact = 1
result = 0 result = 0
for i in range(1,n + 1): for i in range(1, n + 1):
fact *= i fact *= i
for j in str(fact): for j in str(fact):

View File

@ -14,15 +14,13 @@ import os
from math import log10 from math import log10
def find_largest(data_file: str="base_exp.txt") -> int: def find_largest(data_file: str = "base_exp.txt") -> int:
""" """
>>> find_largest() >>> find_largest()
709 709
""" """
largest = [0, 0] largest = [0, 0]
for i, line in enumerate( for i, line in enumerate(open(os.path.join(os.path.dirname(__file__), data_file))):
open(os.path.join(os.path.dirname(__file__), data_file))
):
a, x = list(map(int, line.split(","))) a, x = list(map(int, line.split(",")))
if x * log10(a) > largest[0]: if x * log10(a) > largest[0]:
largest = [x * log10(a), i + 1] largest = [x * log10(a), i + 1]

View File

@ -3,8 +3,10 @@ import requests
def imdb_top(imdb_top_n): def imdb_top(imdb_top_n):
base_url = (f"https://www.imdb.com/search/title?title_type=" base_url = (
f"feature&sort=num_votes,desc&count={imdb_top_n}") f"https://www.imdb.com/search/title?title_type="
f"feature&sort=num_votes,desc&count={imdb_top_n}"
)
source = BeautifulSoup(requests.get(base_url).content, "html.parser") source = BeautifulSoup(requests.get(base_url).content, "html.parser")
for m in source.findAll("div", class_="lister-item mode-advanced"): for m in source.findAll("div", class_="lister-item mode-advanced"):
print("\n" + m.h3.a.text) # movie's name print("\n" + m.h3.a.text) # movie's name