mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
isort --profile black . (#2181)
* updating DIRECTORY.md * isort --profile black . * Black after * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
cd3e8f95a0
commit
5f4da5d616
2
.github/workflows/autoblack.yml
vendored
2
.github/workflows/autoblack.yml
vendored
|
@ -17,7 +17,7 @@ jobs:
|
|||
if: failure()
|
||||
run: |
|
||||
black .
|
||||
isort --profile black --recursive .
|
||||
isort --profile black .
|
||||
git config --global user.name github-actions
|
||||
git config --global user.email '${GITHUB_ACTOR}@users.noreply.github.com'
|
||||
git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/$GITHUB_REPOSITORY
|
||||
|
|
|
@ -253,6 +253,7 @@
|
|||
* [Finding Bridges](https://github.com/TheAlgorithms/Python/blob/master/graphs/finding_bridges.py)
|
||||
* [Frequent Pattern Graph Miner](https://github.com/TheAlgorithms/Python/blob/master/graphs/frequent_pattern_graph_miner.py)
|
||||
* [G Topological Sort](https://github.com/TheAlgorithms/Python/blob/master/graphs/g_topological_sort.py)
|
||||
* [Gale Shapley Bigraph](https://github.com/TheAlgorithms/Python/blob/master/graphs/gale_shapley_bigraph.py)
|
||||
* [Graph List](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_list.py)
|
||||
* [Graph Matrix](https://github.com/TheAlgorithms/Python/blob/master/graphs/graph_matrix.py)
|
||||
* [Graphs Floyd Warshall](https://github.com/TheAlgorithms/Python/blob/master/graphs/graphs_floyd_warshall.py)
|
||||
|
@ -596,6 +597,7 @@
|
|||
|
||||
## Searches
|
||||
* [Binary Search](https://github.com/TheAlgorithms/Python/blob/master/searches/binary_search.py)
|
||||
* [Double Linear Search](https://github.com/TheAlgorithms/Python/blob/master/searches/double_linear_search.py)
|
||||
* [Fibonacci Search](https://github.com/TheAlgorithms/Python/blob/master/searches/fibonacci_search.py)
|
||||
* [Hill Climbing](https://github.com/TheAlgorithms/Python/blob/master/searches/hill_climbing.py)
|
||||
* [Interpolation Search](https://github.com/TheAlgorithms/Python/blob/master/searches/interpolation_search.py)
|
||||
|
|
|
@ -6,9 +6,10 @@ flake8 : passed
|
|||
mypy : passed
|
||||
"""
|
||||
|
||||
from numpy import array, cos, sin, radians, cross # type: ignore
|
||||
from typing import List
|
||||
|
||||
from numpy import array, cos, cross, radians, sin # type: ignore
|
||||
|
||||
|
||||
def polar_force(
|
||||
magnitude: float, angle: float, radian_mode: bool = False
|
||||
|
|
|
@ -2,9 +2,9 @@
|
|||
# Author: Syed Haseeb Shah (github.com/QuantumNovice)
|
||||
# The Newton-Raphson method (also known as Newton's method) is a way to
|
||||
# quickly find a good approximation for the root of a real-valued function
|
||||
|
||||
from decimal import Decimal
|
||||
from math import * # noqa: F401, F403
|
||||
|
||||
from sympy import diff
|
||||
|
||||
|
||||
|
|
|
@ -35,8 +35,8 @@ https://www.youtube.com/watch?v=kfmNeskzs2o
|
|||
https://www.youtube.com/watch?v=4RhLNDqcjpA
|
||||
|
||||
"""
|
||||
|
||||
import string
|
||||
|
||||
import numpy
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import string
|
||||
import itertools
|
||||
import string
|
||||
|
||||
|
||||
def chunker(seq, size):
|
||||
|
|
|
@ -10,7 +10,7 @@ without needing to store any additional data except the position of the first
|
|||
original character. The BWT is thus a "free" method of improving the efficiency
|
||||
of text compression algorithms, costing only some extra computation.
|
||||
"""
|
||||
from typing import List, Dict
|
||||
from typing import Dict, List
|
||||
|
||||
|
||||
def all_rotations(s: str) -> List[str]:
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import numpy as np
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
"""
|
||||
Harris Corner Detector
|
||||
|
|
|
@ -35,7 +35,7 @@ https://www.geeksforgeeks.org/segment-tree-efficient-implementation/
|
|||
>>> st.query(0, 2)
|
||||
[1, 2, 3]
|
||||
"""
|
||||
from typing import List, Callable, TypeVar
|
||||
from typing import Callable, List, TypeVar
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
|
|
@ -3,9 +3,8 @@ Segment_tree creates a segment tree with a given array and function,
|
|||
allowing queries to be done later in log(N) time
|
||||
function takes 2 values and returns a same type value
|
||||
"""
|
||||
|
||||
from queue import Queue
|
||||
from collections.abc import Sequence
|
||||
from queue import Queue
|
||||
|
||||
|
||||
class SegmentTreeNode(object):
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
from hash_table import HashTable
|
||||
from number_theory.prime_numbers import next_prime, check_prime
|
||||
from number_theory.prime_numbers import check_prime, next_prime
|
||||
|
||||
|
||||
class DoubleHash(HashTable):
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from hash_table import HashTable
|
||||
from collections import deque
|
||||
|
||||
from hash_table import HashTable
|
||||
|
||||
|
||||
class HashTableWithLinkedList(HashTable):
|
||||
def __init__(self, *args, **kwargs):
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
"""
|
||||
Implemented an algorithm using opencv to convert a colored image into its negative
|
||||
"""
|
||||
|
||||
from cv2 import imread, imshow, waitKey, destroyAllWindows
|
||||
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
||||
|
||||
|
||||
def convert_to_negative(img):
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
"""
|
||||
Implementation Burke's algorithm (dithering)
|
||||
"""
|
||||
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
||||
import numpy as np
|
||||
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
||||
|
||||
|
||||
class Burkes:
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from digital_image_processing.filters.convolve import img_convolve
|
||||
from digital_image_processing.filters.sobel_filter import sobel_filter
|
||||
|
||||
|
|
|
@ -9,11 +9,11 @@ Inputs:
|
|||
Output:
|
||||
img:A 2d zero padded image with values in between 0 and 1
|
||||
"""
|
||||
import math
|
||||
import sys
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import math
|
||||
import sys
|
||||
|
||||
|
||||
def vec_gaussian(img: np.ndarray, variance: float) -> np.ndarray:
|
||||
|
|
|
@ -1,8 +1,8 @@
|
|||
# @Author : lightXu
|
||||
# @File : convolve.py
|
||||
# @Time : 2019/7/8 0008 下午 16:13
|
||||
from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey
|
||||
from numpy import array, zeros, ravel, pad, dot, uint8
|
||||
from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
|
||||
from numpy import array, dot, pad, ravel, uint8, zeros
|
||||
|
||||
|
||||
def im2col(image, block_size):
|
||||
|
|
|
@ -1,10 +1,11 @@
|
|||
"""
|
||||
Implementation of gaussian filter algorithm
|
||||
"""
|
||||
from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey
|
||||
from numpy import pi, mgrid, exp, square, zeros, ravel, dot, uint8
|
||||
from itertools import product
|
||||
|
||||
from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
|
||||
from numpy import dot, exp, mgrid, pi, ravel, square, uint8, zeros
|
||||
|
||||
|
||||
def gen_gaussian_kernel(k_size, sigma):
|
||||
center = k_size // 2
|
||||
|
|
|
@ -1,9 +1,8 @@
|
|||
"""
|
||||
Implementation of median filter algorithm
|
||||
"""
|
||||
|
||||
from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey
|
||||
from numpy import zeros_like, ravel, sort, multiply, divide, int8
|
||||
from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
|
||||
from numpy import divide, int8, multiply, ravel, sort, zeros_like
|
||||
|
||||
|
||||
def median_filter(gray_img, mask=3):
|
||||
|
|
|
@ -2,7 +2,8 @@
|
|||
# @File : sobel_filter.py
|
||||
# @Time : 2019/7/8 0008 下午 16:26
|
||||
import numpy as np
|
||||
from cv2 import imread, cvtColor, COLOR_BGR2GRAY, imshow, waitKey
|
||||
from cv2 import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
|
||||
|
||||
from digital_image_processing.filters.convolve import img_convolve
|
||||
|
||||
|
||||
|
|
|
@ -6,10 +6,9 @@ Created on Fri Sep 28 15:22:29 2018
|
|||
import copy
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
import cv2
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
class contrastStretch:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
""" Multiple image resizing techniques """
|
||||
import numpy as np
|
||||
from cv2 import imread, imshow, waitKey, destroyAllWindows
|
||||
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
||||
|
||||
|
||||
class NearestNeighbour:
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
from matplotlib import pyplot as plt
|
||||
import numpy as np
|
||||
import cv2
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
def get_rotation(
|
||||
|
|
|
@ -1,8 +1,7 @@
|
|||
"""
|
||||
Implemented an algorithm using opencv to tone an image with sepia technique
|
||||
"""
|
||||
|
||||
from cv2 import imread, imshow, waitKey, destroyAllWindows
|
||||
from cv2 import destroyAllWindows, imread, imshow, waitKey
|
||||
|
||||
|
||||
def make_sepia(img, factor: int):
|
||||
|
|
|
@ -1,21 +1,21 @@
|
|||
"""
|
||||
PyTest's for Digital Image Processing
|
||||
"""
|
||||
|
||||
import digital_image_processing.edge_detection.canny as canny
|
||||
import digital_image_processing.filters.gaussian_filter as gg
|
||||
import digital_image_processing.filters.median_filter as med
|
||||
import digital_image_processing.filters.sobel_filter as sob
|
||||
import digital_image_processing.filters.convolve as conv
|
||||
import digital_image_processing.change_contrast as cc
|
||||
import digital_image_processing.convert_to_negative as cn
|
||||
import digital_image_processing.sepia as sp
|
||||
import digital_image_processing.dithering.burkes as bs
|
||||
import digital_image_processing.resize.resize as rs
|
||||
from cv2 import imread, cvtColor, COLOR_BGR2GRAY
|
||||
from cv2 import COLOR_BGR2GRAY, cvtColor, imread
|
||||
from numpy import array, uint8
|
||||
from PIL import Image
|
||||
|
||||
from digital_image_processing import change_contrast as cc
|
||||
from digital_image_processing import convert_to_negative as cn
|
||||
from digital_image_processing import sepia as sp
|
||||
from digital_image_processing.dithering import burkes as bs
|
||||
from digital_image_processing.edge_detection import canny as canny
|
||||
from digital_image_processing.filters import convolve as conv
|
||||
from digital_image_processing.filters import gaussian_filter as gg
|
||||
from digital_image_processing.filters import median_filter as med
|
||||
from digital_image_processing.filters import sobel_filter as sob
|
||||
from digital_image_processing.resize import resize as rs
|
||||
|
||||
img = imread(r"digital_image_processing/image_data/lena_small.jpg")
|
||||
gray = cvtColor(img, COLOR_BGR2GRAY)
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from itertools import accumulate
|
||||
from bisect import bisect
|
||||
from itertools import accumulate
|
||||
|
||||
|
||||
def fracKnapsack(vl, wt, W, n):
|
||||
|
|
|
@ -73,9 +73,10 @@ if __name__ == "__main__":
|
|||
A random simulation of this algorithm.
|
||||
"""
|
||||
import time
|
||||
import matplotlib.pyplot as plt
|
||||
from random import randint
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
|
||||
tim = []
|
||||
for i in inputs:
|
||||
|
|
|
@ -16,9 +16,7 @@
|
|||
# frequencies will be placed near the root of the tree while the nodes
|
||||
# with low frequencies will be placed near the leaves of the tree thus
|
||||
# reducing search time in the most frequent instances.
|
||||
|
||||
import sys
|
||||
|
||||
from random import randint
|
||||
|
||||
|
||||
|
|
|
@ -9,7 +9,6 @@ Python:
|
|||
import numpy as np
|
||||
import skfuzzy as fuzz
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Create universe of discourse in Python using linspace ()
|
||||
X = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
|
||||
|
@ -45,7 +44,7 @@ if __name__ == "__main__":
|
|||
# max-product composition
|
||||
|
||||
# Plot each set A, set B and each operation result using plot() and subplot().
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
plt.figure()
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from math import atan, cos, radians, sin, tan
|
||||
|
||||
from haversine_distance import haversine_distance
|
||||
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
# https://en.wikipedia.org/wiki/B%C3%A9zier_curve
|
||||
# https://www.tutorialspoint.com/computer_graphics/computer_graphics_curves.htm
|
||||
|
||||
from typing import List, Tuple
|
||||
|
||||
from scipy.special import comb
|
||||
|
||||
|
||||
|
@ -78,7 +78,7 @@ class BezierCurve:
|
|||
step_size: defines the step(s) at which to evaluate the Bezier curve.
|
||||
The smaller the step size, the finer the curve produced.
|
||||
"""
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
to_plot_x: List[float] = [] # x coordinates of points to plot
|
||||
to_plot_y: List[float] = [] # y coordinates of points to plot
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from collections import deque
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Accept No. of Nodes and edges
|
||||
n, m = map(int, input().split(" "))
|
||||
|
|
|
@ -12,8 +12,7 @@ while Q is non-empty:
|
|||
mark w as explored
|
||||
add w to Q (at the end)
|
||||
"""
|
||||
|
||||
from typing import Set, Dict
|
||||
from typing import Dict, Set
|
||||
|
||||
G = {
|
||||
"A": ["B", "C"],
|
||||
|
|
|
@ -11,8 +11,7 @@ Pseudocode:
|
|||
if v unexplored:
|
||||
DFS(G, v)
|
||||
"""
|
||||
|
||||
from typing import Set, Dict
|
||||
from typing import Dict, Set
|
||||
|
||||
|
||||
def depth_first_search(graph: Dict, start: str) -> Set[int]:
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
from collections import deque
|
||||
import random as rand
|
||||
import math as math
|
||||
import random as rand
|
||||
import time
|
||||
from collections import deque
|
||||
|
||||
# the default weight is 1 if not assigned but all the implementation is weighted
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import heapq
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import unittest
|
||||
|
||||
import greedy_knapsack as kp
|
||||
|
||||
|
||||
|
|
|
@ -23,10 +23,9 @@ state. After the last block is processed the current hash state is returned as
|
|||
the final hash.
|
||||
Reference: https://deadhacker.com/2006/02/21/sha-1-illustrated/
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import struct
|
||||
import hashlib # hashlib is only used inside the Test class
|
||||
import struct
|
||||
import unittest
|
||||
|
||||
|
||||
|
|
|
@ -6,9 +6,16 @@ Created on Mon Feb 26 15:40:07 2018
|
|||
|
||||
This file contains the test-suite for the linear algebra library.
|
||||
"""
|
||||
|
||||
import unittest
|
||||
from lib import Matrix, Vector, axpy, squareZeroMatrix, unitBasisVector, zeroVector
|
||||
|
||||
from lib import (
|
||||
Matrix,
|
||||
Vector,
|
||||
axpy,
|
||||
squareZeroMatrix,
|
||||
unitBasisVector,
|
||||
zeroVector,
|
||||
)
|
||||
|
||||
|
||||
class Test(unittest.TestCase):
|
||||
|
|
|
@ -1,10 +1,9 @@
|
|||
# Gaussian Naive Bayes Example
|
||||
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
from sklearn.metrics import plot_confusion_matrix
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.metrics import plot_confusion_matrix
|
||||
from sklearn.model_selection import train_test_split
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.naive_bayes import GaussianNB
|
||||
|
||||
|
||||
def main():
|
||||
|
|
|
@ -52,11 +52,12 @@ Usage:
|
|||
|
||||
|
||||
"""
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.metrics import pairwise_distances
|
||||
import warnings
|
||||
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
|
@ -193,7 +194,7 @@ def kmeans(
|
|||
|
||||
# Mock test below
|
||||
if False: # change to true to run this test case.
|
||||
import sklearn.datasets as ds
|
||||
from sklearn import datasets as ds
|
||||
|
||||
dataset = ds.load_iris()
|
||||
k = 3
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
import numpy as np
|
||||
from collections import Counter
|
||||
|
||||
import numpy as np
|
||||
from sklearn import datasets
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.neighbors import KNeighborsClassifier
|
||||
|
||||
# Load iris file
|
||||
|
|
|
@ -41,11 +41,9 @@
|
|||
|
||||
Author: @EverLookNeverSee
|
||||
"""
|
||||
|
||||
from math import log
|
||||
from os import name, system
|
||||
from random import gauss
|
||||
from random import seed
|
||||
from random import gauss, seed
|
||||
|
||||
|
||||
# Make a training dataset drawn from a gaussian distribution
|
||||
|
|
|
@ -7,8 +7,8 @@ We try to set the weight of these features, over many iterations, so that they b
|
|||
fit our dataset. In this particular code, I had used a CSGO dataset (ADR vs
|
||||
Rating). We try to best fit a line through dataset and estimate the parameters.
|
||||
"""
|
||||
import requests
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
|
||||
def collect_dataset():
|
||||
|
|
|
@ -14,14 +14,12 @@ Helpful resources:
|
|||
Coursera ML course
|
||||
https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn import datasets
|
||||
|
||||
# get_ipython().run_line_magic('matplotlib', 'inline')
|
||||
|
||||
from sklearn import datasets
|
||||
|
||||
|
||||
# In[67]:
|
||||
|
||||
|
|
|
@ -4,14 +4,12 @@
|
|||
* http://colah.github.io/posts/2015-08-Understanding-LSTMs
|
||||
* https://en.wikipedia.org/wiki/Long_short-term_memory
|
||||
"""
|
||||
|
||||
from keras.layers import Dense, LSTM
|
||||
from keras.models import Sequential
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from keras.layers import LSTM, Dense
|
||||
from keras.models import Sequential
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
First part of building a model is to get the data and prepare
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
from sklearn.neural_network import MLPClassifier
|
||||
|
||||
|
||||
X = [[0.0, 0.0], [1.0, 1.0], [1.0, 0.0], [0.0, 1.0]]
|
||||
y = [0, 1, 0, 0]
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.linear_model import LinearRegression
|
||||
|
||||
# Splitting the dataset into the Training set and Test set
|
||||
|
|
|
@ -1,10 +1,9 @@
|
|||
# Random Forest Classifier Example
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.ensemble import RandomForestClassifier
|
||||
from sklearn.metrics import plot_confusion_matrix
|
||||
import matplotlib.pyplot as plt
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
def main():
|
||||
|
|
|
@ -1,10 +1,8 @@
|
|||
# Random Forest Regressor Example
|
||||
|
||||
from sklearn.datasets import load_boston
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.ensemble import RandomForestRegressor
|
||||
from sklearn.metrics import mean_absolute_error
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
def main():
|
||||
|
|
|
@ -36,9 +36,9 @@ import os
|
|||
import sys
|
||||
import urllib.request
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.datasets import make_blobs, make_circles
|
||||
from sklearn.preprocessing import StandardScaler
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from sklearn.datasets import load_iris
|
||||
from sklearn import svm
|
||||
from sklearn.datasets import load_iris
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
from typing import Tuple, List
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
def n31(a: int) -> Tuple[List[int], int]:
|
||||
|
|
|
@ -7,10 +7,10 @@
|
|||
reference-->Su, Francis E., et al. "Fibonacci Number Formula." Math Fun Facts.
|
||||
<http://www.math.hmc.edu/funfacts>
|
||||
"""
|
||||
import math
|
||||
import functools
|
||||
import math
|
||||
import time
|
||||
from decimal import getcontext, Decimal
|
||||
from decimal import Decimal, getcontext
|
||||
|
||||
getcontext().prec = 100
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
import math
|
||||
from scipy.integrate import quad
|
||||
|
||||
from numpy import inf
|
||||
from scipy.integrate import quad
|
||||
|
||||
|
||||
def gamma(num: float) -> float:
|
||||
|
|
|
@ -5,7 +5,7 @@ python/black : True
|
|||
python : 3.7.3
|
||||
|
||||
"""
|
||||
from numpy import pi, sqrt, exp
|
||||
from numpy import exp, pi, sqrt
|
||||
|
||||
|
||||
def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int:
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from typing import Callable, Union
|
||||
import math as m
|
||||
from typing import Callable, Union
|
||||
|
||||
|
||||
def line_length(
|
||||
|
|
|
@ -5,8 +5,8 @@ python/black : True
|
|||
flake8 : True
|
||||
"""
|
||||
|
||||
from maths.prime_factors import prime_factors
|
||||
from maths.is_square_free import is_square_free
|
||||
from maths.prime_factors import prime_factors
|
||||
|
||||
|
||||
def mobius(n: int) -> int:
|
||||
|
|
|
@ -7,7 +7,6 @@
|
|||
limit is reached or the gradient f'(x[n]) approaches zero. In both cases, exception
|
||||
is raised. If iteration limit is reached, try increasing maxiter.
|
||||
"""
|
||||
|
||||
import math as m
|
||||
|
||||
|
||||
|
@ -42,7 +41,7 @@ def newton_raphson(f, x0=0, maxiter=100, step=0.0001, maxerror=1e-6, logsteps=Fa
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
f = lambda x: m.tanh(x) ** 2 - m.exp(3 * x) # noqa: E731
|
||||
solution, error, steps = newton_raphson(
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from typing import Generator
|
||||
import math
|
||||
from typing import Generator
|
||||
|
||||
|
||||
def slow_primes(max: int) -> Generator[int, None, None]:
|
||||
|
|
|
@ -9,9 +9,9 @@ After through ReLU, the element of the vector always 0 or real number.
|
|||
Script inspired from its corresponding Wikipedia article
|
||||
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
from typing import List
|
||||
|
||||
|
||||
def relu(vector: List[float]):
|
||||
|
|
|
@ -3,8 +3,8 @@ Find Volumes of Various Shapes.
|
|||
|
||||
Wikipedia reference: https://en.wikipedia.org/wiki/Volume
|
||||
"""
|
||||
from typing import Union
|
||||
from math import pi, pow
|
||||
from typing import Union
|
||||
|
||||
|
||||
def vol_cube(side_length: Union[int, float]) -> float:
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
import datetime
|
||||
import argparse
|
||||
import datetime
|
||||
|
||||
|
||||
def zeller(date_input: str) -> str:
|
||||
|
|
|
@ -6,11 +6,13 @@ the pytest run configuration
|
|||
-vv -m mat_ops -p no:cacheprovider
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
# standard libraries
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import logging
|
||||
|
||||
# Custom/local libraries
|
||||
from matrix import matrix_operation as matop
|
||||
|
|
|
@ -17,9 +17,8 @@ Github : https://github.com/RiptideBo
|
|||
Date: 2017.11.23
|
||||
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
|
|
|
@ -14,8 +14,9 @@
|
|||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||
"""
|
||||
import pickle
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
|
||||
class CNN:
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from abc import abstractmethod
|
||||
import sys
|
||||
from abc import abstractmethod
|
||||
from collections import deque
|
||||
|
||||
|
||||
|
|
|
@ -27,8 +27,8 @@ Credits: This code was written by editing the code from
|
|||
http://www.riannetrujillo.com/blog/python-fractal/
|
||||
|
||||
"""
|
||||
import turtle
|
||||
import sys
|
||||
import turtle
|
||||
|
||||
PROGNAME = "Sierpinski Triangle"
|
||||
|
||||
|
|
|
@ -5,8 +5,8 @@ By listing the first six prime numbers:
|
|||
|
||||
We can see that the 6th prime is 13. What is the Nth prime number?
|
||||
"""
|
||||
import math
|
||||
import itertools
|
||||
import math
|
||||
|
||||
|
||||
def primeCheck(number):
|
||||
|
|
|
@ -15,7 +15,6 @@ words?
|
|||
"""
|
||||
import os
|
||||
|
||||
|
||||
# Precomputes a list of the 100 first triangular numbers
|
||||
TRIANGULAR_NUMBERS = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
|
||||
|
||||
|
|
|
@ -3,9 +3,9 @@ Shortest job remaining first
|
|||
Please note arrival time and burst
|
||||
Please use spaces to separate times entered.
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
import pandas as pd
|
||||
from typing import List
|
||||
|
||||
|
||||
def calculate_waitingtime(
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
|
||||
from build_directory_md import good_file_paths
|
||||
|
||||
filepaths = list(good_file_paths())
|
||||
|
|
|
@ -150,7 +150,7 @@ def hill_climbing(
|
|||
solution_found = True
|
||||
|
||||
if visualization:
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
plt.plot(range(iterations), scores)
|
||||
plt.xlabel("Iterations")
|
||||
|
|
|
@ -84,7 +84,7 @@ def simulated_annealing(
|
|||
current_state = next_state
|
||||
|
||||
if visualization:
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
plt.plot(range(iterations), scores)
|
||||
plt.xlabel("Iterations")
|
||||
|
|
|
@ -24,9 +24,8 @@ python tabu_search.py -f your_file_name.txt -number_of_iterations_of_tabu_search
|
|||
-s size_of_tabu_search
|
||||
e.g. python tabu_search.py -f tabudata2.txt -i 4 -s 3
|
||||
"""
|
||||
|
||||
import copy
|
||||
import argparse
|
||||
import copy
|
||||
|
||||
|
||||
def generate_neighbours(path):
|
||||
|
|
|
@ -3,8 +3,8 @@
|
|||
#
|
||||
# Sort large text files in a minimum amount of memory
|
||||
#
|
||||
import os
|
||||
import argparse
|
||||
import os
|
||||
|
||||
|
||||
class FileSplitter:
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
from random import randint
|
||||
from tempfile import TemporaryFile
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
|
|
@ -1,10 +1,9 @@
|
|||
import sys
|
||||
import webbrowser
|
||||
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
from fake_useragent import UserAgent
|
||||
import requests
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("Googling.....")
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from bs4 import BeautifulSoup
|
||||
import requests
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
|
||||
def imdb_top(imdb_top_n):
|
||||
|
|
Loading…
Reference in New Issue
Block a user