Improve primelib.py test coverage #9943 (#10251)

* Update the doctest of primelib.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Correct errors for the doctest of primelib.py

* last error for the doctest of primelib.py

* last error for the doctest of primelib.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
Ricardo Martinez Peinado 2023-10-11 12:11:05 +02:00 committed by GitHub
parent 672fda9130
commit 5fb6496d1b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -46,6 +46,19 @@ def is_prime(number: int) -> bool:
""" """
input: positive integer 'number' input: positive integer 'number'
returns true if 'number' is prime otherwise false. returns true if 'number' is prime otherwise false.
>>> is_prime(3)
True
>>> is_prime(10)
False
>>> is_prime(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and positive
>>> is_prime("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and positive
""" """
# precondition # precondition
@ -83,6 +96,16 @@ def sieve_er(n):
This function implements the algorithm called This function implements the algorithm called
sieve of erathostenes. sieve of erathostenes.
>>> sieve_er(8)
[2, 3, 5, 7]
>>> sieve_er(-1)
Traceback (most recent call last):
...
AssertionError: 'N' must been an int and > 2
>>> sieve_er("test")
Traceback (most recent call last):
...
AssertionError: 'N' must been an int and > 2
""" """
# precondition # precondition
@ -116,6 +139,17 @@ def get_prime_numbers(n):
input: positive integer 'N' > 2 input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N (inclusive) returns a list of prime numbers from 2 up to N (inclusive)
This function is more efficient as function 'sieveEr(...)' This function is more efficient as function 'sieveEr(...)'
>>> get_prime_numbers(8)
[2, 3, 5, 7]
>>> get_prime_numbers(-1)
Traceback (most recent call last):
...
AssertionError: 'N' must been an int and > 2
>>> get_prime_numbers("test")
Traceback (most recent call last):
...
AssertionError: 'N' must been an int and > 2
""" """
# precondition # precondition
@ -142,6 +176,21 @@ def prime_factorization(number):
""" """
input: positive integer 'number' input: positive integer 'number'
returns a list of the prime number factors of 'number' returns a list of the prime number factors of 'number'
>>> prime_factorization(0)
[0]
>>> prime_factorization(8)
[2, 2, 2]
>>> prime_factorization(287)
[7, 41]
>>> prime_factorization(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
>>> prime_factorization("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
""" """
# precondition # precondition
@ -183,12 +232,27 @@ def greatest_prime_factor(number):
""" """
input: positive integer 'number' >= 0 input: positive integer 'number' >= 0
returns the greatest prime number factor of 'number' returns the greatest prime number factor of 'number'
>>> greatest_prime_factor(0)
0
>>> greatest_prime_factor(8)
2
>>> greatest_prime_factor(287)
41
>>> greatest_prime_factor(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
>>> greatest_prime_factor("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
""" """
# precondition # precondition
assert isinstance(number, int) and ( assert isinstance(number, int) and (
number >= 0 number >= 0
), "'number' bust been an int and >= 0" ), "'number' must been an int and >= 0"
ans = 0 ans = 0
@ -210,12 +274,27 @@ def smallest_prime_factor(number):
""" """
input: integer 'number' >= 0 input: integer 'number' >= 0
returns the smallest prime number factor of 'number' returns the smallest prime number factor of 'number'
>>> smallest_prime_factor(0)
0
>>> smallest_prime_factor(8)
2
>>> smallest_prime_factor(287)
7
>>> smallest_prime_factor(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
>>> smallest_prime_factor("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
""" """
# precondition # precondition
assert isinstance(number, int) and ( assert isinstance(number, int) and (
number >= 0 number >= 0
), "'number' bust been an int and >= 0" ), "'number' must been an int and >= 0"
ans = 0 ans = 0
@ -237,11 +316,24 @@ def is_even(number):
""" """
input: integer 'number' input: integer 'number'
returns true if 'number' is even, otherwise false. returns true if 'number' is even, otherwise false.
>>> is_even(0)
True
>>> is_even(8)
True
>>> is_even(287)
False
>>> is_even(-1)
False
>>> is_even("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int
""" """
# precondition # precondition
assert isinstance(number, int), "'number' must been an int" assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 == 0, bool), "compare bust been from type bool" assert isinstance(number % 2 == 0, bool), "compare must been from type bool"
return number % 2 == 0 return number % 2 == 0
@ -253,11 +345,24 @@ def is_odd(number):
""" """
input: integer 'number' input: integer 'number'
returns true if 'number' is odd, otherwise false. returns true if 'number' is odd, otherwise false.
>>> is_odd(0)
False
>>> is_odd(8)
False
>>> is_odd(287)
True
>>> is_odd(-1)
True
>>> is_odd("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int
""" """
# precondition # precondition
assert isinstance(number, int), "'number' must been an int" assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 != 0, bool), "compare bust been from type bool" assert isinstance(number % 2 != 0, bool), "compare must been from type bool"
return number % 2 != 0 return number % 2 != 0
@ -270,6 +375,23 @@ def goldbach(number):
Goldbach's assumption Goldbach's assumption
input: a even positive integer 'number' > 2 input: a even positive integer 'number' > 2
returns a list of two prime numbers whose sum is equal to 'number' returns a list of two prime numbers whose sum is equal to 'number'
>>> goldbach(8)
[3, 5]
>>> goldbach(824)
[3, 821]
>>> goldbach(0)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int, even and > 2
>>> goldbach(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int, even and > 2
>>> goldbach("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int, even and > 2
""" """
# precondition # precondition
@ -323,6 +445,23 @@ def kg_v(number1, number2):
Least common multiple Least common multiple
input: two positive integer 'number1' and 'number2' input: two positive integer 'number1' and 'number2'
returns the least common multiple of 'number1' and 'number2' returns the least common multiple of 'number1' and 'number2'
>>> kg_v(8,10)
40
>>> kg_v(824,67)
55208
>>> kg_v(0)
Traceback (most recent call last):
...
TypeError: kg_v() missing 1 required positional argument: 'number2'
>>> kg_v(10,-1)
Traceback (most recent call last):
...
AssertionError: 'number1' and 'number2' must been positive integer.
>>> kg_v("test","test2")
Traceback (most recent call last):
...
AssertionError: 'number1' and 'number2' must been positive integer.
""" """
# precondition # precondition
@ -395,6 +534,21 @@ def get_prime(n):
Gets the n-th prime number. Gets the n-th prime number.
input: positive integer 'n' >= 0 input: positive integer 'n' >= 0
returns the n-th prime number, beginning at index 0 returns the n-th prime number, beginning at index 0
>>> get_prime(0)
2
>>> get_prime(8)
23
>>> get_prime(824)
6337
>>> get_prime(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been a positive int
>>> get_prime("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been a positive int
""" """
# precondition # precondition
@ -430,6 +584,25 @@ def get_primes_between(p_number_1, p_number_2):
pNumber1 < pNumber2 pNumber1 < pNumber2
returns a list of all prime numbers between 'pNumber1' (exclusive) returns a list of all prime numbers between 'pNumber1' (exclusive)
and 'pNumber2' (exclusive) and 'pNumber2' (exclusive)
>>> get_primes_between(3, 67)
[5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61]
>>> get_primes_between(0)
Traceback (most recent call last):
...
TypeError: get_primes_between() missing 1 required positional argument: 'p_number_2'
>>> get_primes_between(0, 1)
Traceback (most recent call last):
...
AssertionError: The arguments must been prime numbers and 'pNumber1' < 'pNumber2'
>>> get_primes_between(-1, 3)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and positive
>>> get_primes_between("test","test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and positive
""" """
# precondition # precondition
@ -473,6 +646,19 @@ def get_divisors(n):
""" """
input: positive integer 'n' >= 1 input: positive integer 'n' >= 1
returns all divisors of n (inclusive 1 and 'n') returns all divisors of n (inclusive 1 and 'n')
>>> get_divisors(8)
[1, 2, 4, 8]
>>> get_divisors(824)
[1, 2, 4, 8, 103, 206, 412, 824]
>>> get_divisors(-1)
Traceback (most recent call last):
...
AssertionError: 'n' must been int and >= 1
>>> get_divisors("test")
Traceback (most recent call last):
...
AssertionError: 'n' must been int and >= 1
""" """
# precondition # precondition
@ -497,6 +683,19 @@ def is_perfect_number(number):
""" """
input: positive integer 'number' > 1 input: positive integer 'number' > 1
returns true if 'number' is a perfect number otherwise false. returns true if 'number' is a perfect number otherwise false.
>>> is_perfect_number(28)
True
>>> is_perfect_number(824)
False
>>> is_perfect_number(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 1
>>> is_perfect_number("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 1
""" """
# precondition # precondition
@ -525,6 +724,15 @@ def simplify_fraction(numerator, denominator):
input: two integer 'numerator' and 'denominator' input: two integer 'numerator' and 'denominator'
assumes: 'denominator' != 0 assumes: 'denominator' != 0
returns: a tuple with simplify numerator and denominator. returns: a tuple with simplify numerator and denominator.
>>> simplify_fraction(10, 20)
(1, 2)
>>> simplify_fraction(10, -1)
(10, -1)
>>> simplify_fraction("test","test")
Traceback (most recent call last):
...
AssertionError: The arguments must been from type int and 'denominator' != 0
""" """
# precondition # precondition
@ -554,6 +762,19 @@ def factorial(n):
""" """
input: positive integer 'n' input: positive integer 'n'
returns the factorial of 'n' (n!) returns the factorial of 'n' (n!)
>>> factorial(0)
1
>>> factorial(20)
2432902008176640000
>>> factorial(-1)
Traceback (most recent call last):
...
AssertionError: 'n' must been a int and >= 0
>>> factorial("test")
Traceback (most recent call last):
...
AssertionError: 'n' must been a int and >= 0
""" """
# precondition # precondition
@ -570,15 +791,27 @@ def factorial(n):
# ------------------------------------------------------------------- # -------------------------------------------------------------------
def fib(n): def fib(n: int) -> int:
""" """
input: positive integer 'n' input: positive integer 'n'
returns the n-th fibonacci term , indexing by 0 returns the n-th fibonacci term , indexing by 0
>>> fib(0)
1
>>> fib(5) >>> fib(5)
8 8
>>> fib(20)
10946
>>> fib(99) >>> fib(99)
354224848179261915075 354224848179261915075
>>> fib(-1)
Traceback (most recent call last):
...
AssertionError: 'n' must been an int and >= 0
>>> fib("test")
Traceback (most recent call last):
...
AssertionError: 'n' must been an int and >= 0
""" """
# precondition # precondition