[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci
This commit is contained in:
pre-commit-ci[bot] 2024-10-27 07:23:56 +00:00
parent 76db9e005b
commit 613f482360
2 changed files with 30 additions and 15 deletions

View File

@ -16,6 +16,7 @@ edges: dict[str, list[str]] = {
vertices: list[str] = ["a", "b", "c", "d", "e"]
# Perform topological sort on a DAG starting from the specified node
def topological_sort(start: str, visited: list[str], sort: list[str]) -> list[str]:
current = start
@ -42,10 +43,11 @@ def topological_sort(start: str, visited: list[str], sort: list[str]) -> list[st
# Return sorted list
return sort
if __name__ == "__main__":
# Topological Sorting from node "a" (Returns the order in bottom up approach)
sort = topological_sort("a", [], [])
# Reversing the list to get the correct topological order (Top down approach)
sort.reverse()
sort.reverse()
print(sort)

View File

@ -1,11 +1,13 @@
""" Travelling Salesman Problem (TSP) """
"""Travelling Salesman Problem (TSP)"""
import itertools
import math
class InvalidGraphError(ValueError):
"""Custom error for invalid graph inputs."""
def euclidean_distance(point1: list[float], point2: list[float]) -> float:
"""
Calculate the Euclidean distance between two points in 2D space.
@ -28,6 +30,7 @@ def euclidean_distance(point1: list[float], point2: list[float]) -> float:
except TypeError:
raise ValueError("Invalid input: Points must be numerical coordinates")
def validate_graph(graph_points: dict[str, list[float]]) -> None:
"""
Validate the input graph to ensure it has valid nodes and coordinates.
@ -41,12 +44,12 @@ def validate_graph(graph_points: dict[str, list[float]]) -> None:
Traceback (most recent call last):
...
InvalidGraphError: Each node must have a valid 2D coordinate [x, y]
>>> validate_graph([10, 20]) # Invalid input type
Traceback (most recent call last):
...
InvalidGraphError: Graph must be a dictionary with node names and coordinates
>>> validate_graph({"A": [10, 20], "B": [30, 21], "C": [15]}) # Missing coordinate
Traceback (most recent call last):
...
@ -66,6 +69,7 @@ def validate_graph(graph_points: dict[str, list[float]]) -> None:
):
raise InvalidGraphError("Each node must have a valid 2D coordinate [x, y]")
# TSP in Brute Force Approach
def travelling_salesman_brute_force(
graph_points: dict[str, list[float]],
@ -89,7 +93,7 @@ def travelling_salesman_brute_force(
raise InvalidGraphError("Graph must have at least two nodes")
min_path = [] # List that stores shortest path
min_distance = float("inf") # Initialize minimum distance to infinity
min_distance = float("inf") # Initialize minimum distance to infinity
start_node = nodes[0]
other_nodes = nodes[1:]
@ -111,6 +115,7 @@ def travelling_salesman_brute_force(
return min_path, min_distance
# TSP in Dynamic Programming approach
def travelling_salesman_dynamic_programming(
graph_points: dict[str, list[float]],
@ -127,20 +132,26 @@ def travelling_salesman_dynamic_programming(
"""
validate_graph(graph_points)
n = len(graph_points) # Extracting the node names (keys)
n = len(graph_points) # Extracting the node names (keys)
# There shoukd be atleast 2 nodes for a valid TSP
if n < 2:
raise InvalidGraphError("Graph must have at least two nodes")
nodes = list(graph_points.keys()) # Extracting the node names (keys)
nodes = list(graph_points.keys()) # Extracting the node names (keys)
# Initialize distance matrix with float values
dist = [[euclidean_distance(graph_points[nodes[i]], graph_points[nodes[j]]) for j in range(n)] for i in range(n)]
dist = [
[
euclidean_distance(graph_points[nodes[i]], graph_points[nodes[j]])
for j in range(n)
]
for i in range(n)
]
# Initialize a dynamic programming table with infinity
# Initialize a dynamic programming table with infinity
dp = [[float("inf")] * n for _ in range(1 << n)]
dp[1][0] = 0 # Only visited node is the starting point at node 0
dp[1][0] = 0 # Only visited node is the starting point at node 0
# Iterate through all masks of visited nodes
for mask in range(1 << n):
@ -149,14 +160,16 @@ def travelling_salesman_dynamic_programming(
if mask & (1 << u):
# Traverse nodes 'v' such that u->v
for v in range(n):
if mask & (1 << v) == 0: # If v is not visited
next_mask = mask | (1 << v) # Upodate mask to include 'v'
if mask & (1 << v) == 0: # If v is not visited
next_mask = mask | (1 << v) # Upodate mask to include 'v'
# Update dynamic programming table with minimum distance
dp[next_mask][v] = min(dp[next_mask][v], dp[mask][u] + dist[u][v])
dp[next_mask][v] = min(
dp[next_mask][v], dp[mask][u] + dist[u][v]
)
final_mask = (1 << n) - 1
min_cost = float("inf")
end_node = -1 # Track the last node in the optimal path
end_node = -1 # Track the last node in the optimal path
for u in range(1, n):
if min_cost > dp[final_mask][u] + dist[u][0]:
@ -175,7 +188,7 @@ def travelling_salesman_dynamic_programming(
== dp[mask ^ (1 << end_node)][u] + dist[u][end_node]
):
mask ^= 1 << end_node # Update mask to remove end node
end_node = u # Set the previous node as end node
end_node = u # Set the previous node as end node
break
path.append(nodes[0]) # Bottom-up Order