mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Remove useless code in doctests (#7733)
* refactor: Fix matrix display deprecation * refactor: Remove useless `print` and `pass` statements * revert: Replace broken doctests * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * revert: Fix failing doctests * chore: Satisfy pre-commit Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
501a1cf0c7
commit
61eedc16c3
|
@ -71,7 +71,7 @@ def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int)
|
|||
>>> curr_ind = 1
|
||||
>>> util_hamilton_cycle(graph, path, curr_ind)
|
||||
True
|
||||
>>> print(path)
|
||||
>>> path
|
||||
[0, 1, 2, 4, 3, 0]
|
||||
|
||||
Case 2: Use exact graph as in previous case, but in the properties taken from
|
||||
|
@ -85,7 +85,7 @@ def util_hamilton_cycle(graph: list[list[int]], path: list[int], curr_ind: int)
|
|||
>>> curr_ind = 3
|
||||
>>> util_hamilton_cycle(graph, path, curr_ind)
|
||||
True
|
||||
>>> print(path)
|
||||
>>> path
|
||||
[0, 1, 2, 4, 3, 0]
|
||||
"""
|
||||
|
||||
|
|
|
@ -22,7 +22,6 @@ def main() -> None:
|
|||
Get images list and annotations list from input dir.
|
||||
Update new images and annotations.
|
||||
Save images and annotations in output dir.
|
||||
>>> pass # A doctest is not possible for this function.
|
||||
"""
|
||||
img_paths, annos = get_dataset(LABEL_DIR, IMAGE_DIR)
|
||||
print("Processing...")
|
||||
|
@ -48,7 +47,6 @@ def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]:
|
|||
- label_dir <type: str>: Path to label include annotation of images
|
||||
- img_dir <type: str>: Path to folder contain images
|
||||
Return <type: list>: List of images path and labels
|
||||
>>> pass # A doctest is not possible for this function.
|
||||
"""
|
||||
img_paths = []
|
||||
labels = []
|
||||
|
@ -88,7 +86,6 @@ def update_image_and_anno(
|
|||
- new_imgs_list <type: narray>: image after resize
|
||||
- new_annos_lists <type: list>: list of new annotation after scale
|
||||
- path_list <type: list>: list the name of image file
|
||||
>>> pass # A doctest is not possible for this function.
|
||||
"""
|
||||
new_annos_lists = []
|
||||
path_list = []
|
||||
|
|
|
@ -23,7 +23,6 @@ def main() -> None:
|
|||
Get images list and annotations list from input dir.
|
||||
Update new images and annotations.
|
||||
Save images and annotations in output dir.
|
||||
>>> pass # A doctest is not possible for this function.
|
||||
"""
|
||||
img_paths, annos = get_dataset(LABEL_DIR, IMG_DIR)
|
||||
for index in range(NUMBER_IMAGES):
|
||||
|
@ -60,7 +59,6 @@ def get_dataset(label_dir: str, img_dir: str) -> tuple[list, list]:
|
|||
- label_dir <type: str>: Path to label include annotation of images
|
||||
- img_dir <type: str>: Path to folder contain images
|
||||
Return <type: list>: List of images path and labels
|
||||
>>> pass # A doctest is not possible for this function.
|
||||
"""
|
||||
img_paths = []
|
||||
labels = []
|
||||
|
@ -105,7 +103,6 @@ def update_image_and_anno(
|
|||
- output_img <type: narray>: image after resize
|
||||
- new_anno <type: list>: list of new annotation after scale
|
||||
- path[0] <type: string>: get the name of image file
|
||||
>>> pass # A doctest is not possible for this function.
|
||||
"""
|
||||
output_img = np.zeros([output_size[0], output_size[1], 3], dtype=np.uint8)
|
||||
scale_x = scale_range[0] + random.random() * (scale_range[1] - scale_range[0])
|
||||
|
|
|
@ -71,7 +71,7 @@ class BinomialHeap:
|
|||
... first_heap.insert(number)
|
||||
|
||||
Size test
|
||||
>>> print(first_heap.size)
|
||||
>>> first_heap.size
|
||||
30
|
||||
|
||||
Deleting - delete() test
|
||||
|
@ -97,7 +97,7 @@ class BinomialHeap:
|
|||
# # # #
|
||||
|
||||
preOrder() test
|
||||
>>> print(second_heap.preOrder())
|
||||
>>> second_heap.preOrder()
|
||||
[(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)]
|
||||
|
||||
printing Heap - __str__() test
|
||||
|
|
|
@ -9,20 +9,20 @@ class Heap:
|
|||
>>> unsorted = [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5]
|
||||
>>> h = Heap()
|
||||
>>> h.build_max_heap(unsorted)
|
||||
>>> print(h)
|
||||
>>> h
|
||||
[209, 201, 25, 103, 107, 15, 1, 9, 7, 11, 5]
|
||||
>>>
|
||||
>>> h.extract_max()
|
||||
209
|
||||
>>> print(h)
|
||||
>>> h
|
||||
[201, 107, 25, 103, 11, 15, 1, 9, 7, 5]
|
||||
>>>
|
||||
>>> h.insert(100)
|
||||
>>> print(h)
|
||||
>>> h
|
||||
[201, 107, 25, 103, 100, 15, 1, 9, 7, 5, 11]
|
||||
>>>
|
||||
>>> h.heap_sort()
|
||||
>>> print(h)
|
||||
>>> h
|
||||
[1, 5, 7, 9, 11, 15, 25, 100, 103, 107, 201]
|
||||
"""
|
||||
|
||||
|
|
|
@ -27,7 +27,7 @@ class MinHeap:
|
|||
>>> myMinHeap.decrease_key(b, -17)
|
||||
>>> print(b)
|
||||
Node(B, -17)
|
||||
>>> print(myMinHeap["B"])
|
||||
>>> myMinHeap["B"]
|
||||
-17
|
||||
"""
|
||||
|
||||
|
|
|
@ -443,4 +443,7 @@ def main():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
main()
|
||||
|
|
|
@ -17,7 +17,7 @@ def stable_matching(
|
|||
|
||||
>>> donor_pref = [[0, 1, 3, 2], [0, 2, 3, 1], [1, 0, 2, 3], [0, 3, 1, 2]]
|
||||
>>> recipient_pref = [[3, 1, 2, 0], [3, 1, 0, 2], [0, 3, 1, 2], [1, 0, 3, 2]]
|
||||
>>> print(stable_matching(donor_pref, recipient_pref))
|
||||
>>> stable_matching(donor_pref, recipient_pref)
|
||||
[1, 2, 3, 0]
|
||||
"""
|
||||
assert len(donor_pref) == len(recipient_pref)
|
||||
|
|
|
@ -18,7 +18,7 @@ class GraphAdjacencyList(Generic[T]):
|
|||
|
||||
Directed graph example:
|
||||
>>> d_graph = GraphAdjacencyList()
|
||||
>>> d_graph
|
||||
>>> print(d_graph)
|
||||
{}
|
||||
>>> d_graph.add_edge(0, 1)
|
||||
{0: [1], 1: []}
|
||||
|
@ -26,7 +26,7 @@ class GraphAdjacencyList(Generic[T]):
|
|||
{0: [1], 1: [2, 4, 5], 2: [], 4: [], 5: []}
|
||||
>>> d_graph.add_edge(2, 0).add_edge(2, 6).add_edge(2, 7)
|
||||
{0: [1], 1: [2, 4, 5], 2: [0, 6, 7], 4: [], 5: [], 6: [], 7: []}
|
||||
>>> print(d_graph)
|
||||
>>> d_graph
|
||||
{0: [1], 1: [2, 4, 5], 2: [0, 6, 7], 4: [], 5: [], 6: [], 7: []}
|
||||
>>> print(repr(d_graph))
|
||||
{0: [1], 1: [2, 4, 5], 2: [0, 6, 7], 4: [], 5: [], 6: [], 7: []}
|
||||
|
@ -68,7 +68,7 @@ class GraphAdjacencyList(Generic[T]):
|
|||
{'a': ['b'], 'b': ['a']}
|
||||
>>> char_graph.add_edge('b', 'c').add_edge('b', 'e').add_edge('b', 'f')
|
||||
{'a': ['b'], 'b': ['a', 'c', 'e', 'f'], 'c': ['b'], 'e': ['b'], 'f': ['b']}
|
||||
>>> print(char_graph)
|
||||
>>> char_graph
|
||||
{'a': ['b'], 'b': ['a', 'c', 'e', 'f'], 'c': ['b'], 'e': ['b'], 'f': ['b']}
|
||||
"""
|
||||
|
||||
|
|
|
@ -69,16 +69,16 @@ class MinPriorityQueue(Generic[T]):
|
|||
>>> queue.push(3, 4000)
|
||||
>>> queue.push(4, 3000)
|
||||
|
||||
>>> print(queue.extract_min())
|
||||
>>> queue.extract_min()
|
||||
2
|
||||
|
||||
>>> queue.update_key(4, 50)
|
||||
|
||||
>>> print(queue.extract_min())
|
||||
>>> queue.extract_min()
|
||||
4
|
||||
>>> print(queue.extract_min())
|
||||
>>> queue.extract_min()
|
||||
1
|
||||
>>> print(queue.extract_min())
|
||||
>>> queue.extract_min()
|
||||
3
|
||||
"""
|
||||
|
||||
|
|
|
@ -53,7 +53,7 @@ def complete_graph(vertices_number: int) -> dict:
|
|||
@input: vertices_number (number of vertices),
|
||||
directed (False if the graph is undirected, True otherwise)
|
||||
@example:
|
||||
>>> print(complete_graph(3))
|
||||
>>> complete_graph(3)
|
||||
{0: [1, 2], 1: [0, 2], 2: [0, 1]}
|
||||
"""
|
||||
return {
|
||||
|
|
|
@ -71,7 +71,6 @@ def local_weight_regression(
|
|||
def load_data(dataset_name: str, cola_name: str, colb_name: str) -> np.mat:
|
||||
"""
|
||||
Function used for loading data from the seaborn splitting into x and y points
|
||||
>>> pass # this function has no doctest
|
||||
"""
|
||||
import seaborn as sns
|
||||
|
||||
|
@ -112,7 +111,6 @@ def plot_preds(
|
|||
) -> plt.plot:
|
||||
"""
|
||||
This function used to plot predictions and display the graph
|
||||
>>> pass #this function has no doctest
|
||||
"""
|
||||
xsort = training_data_x.copy()
|
||||
xsort.sort(axis=0)
|
||||
|
|
|
@ -45,7 +45,7 @@ if __name__ == "__main__":
|
|||
>>> poly = (0.0, 0.0, 5.0, 9.3, 7.0) # f(x) = 7.0x^4 + 9.3x^3 + 5.0x^2
|
||||
>>> x = -13.0
|
||||
>>> # f(-13) = 7.0(-13)^4 + 9.3(-13)^3 + 5.0(-13)^2 = 180339.9
|
||||
>>> print(evaluate_poly(poly, x))
|
||||
>>> evaluate_poly(poly, x)
|
||||
180339.9
|
||||
"""
|
||||
poly = (0.0, 0.0, 5.0, 9.3, 7.0)
|
||||
|
|
|
@ -39,7 +39,7 @@ class FFT:
|
|||
>>> x = FFT(A, B)
|
||||
|
||||
Print product
|
||||
>>> print(x.product) # 2x + 3x^2 + 8x^3 + 4x^4 + 6x^5
|
||||
>>> x.product # 2x + 3x^2 + 8x^3 + 4x^4 + 6x^5
|
||||
[(-0+0j), (2+0j), (3+0j), (8+0j), (6+0j), (8+0j)]
|
||||
|
||||
__str__ test
|
||||
|
|
|
@ -21,9 +21,9 @@ class Matrix:
|
|||
[7. 8. 9.]]
|
||||
|
||||
Matrix rows and columns are available as 2D arrays
|
||||
>>> print(matrix.rows)
|
||||
>>> matrix.rows
|
||||
[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
|
||||
>>> print(matrix.columns())
|
||||
>>> matrix.columns()
|
||||
[[1, 4, 7], [2, 5, 8], [3, 6, 9]]
|
||||
|
||||
Order is returned as a tuple
|
||||
|
@ -55,7 +55,7 @@ class Matrix:
|
|||
[[-3. 6. -3.]
|
||||
[6. -12. 6.]
|
||||
[-3. 6. -3.]]
|
||||
>>> print(matrix.inverse())
|
||||
>>> matrix.inverse()
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
TypeError: Only matrices with a non-zero determinant have an inverse
|
||||
|
|
|
@ -13,25 +13,25 @@ from __future__ import annotations
|
|||
def binary_search(a_list: list[int], item: int) -> bool:
|
||||
"""
|
||||
>>> test_list = [0, 1, 2, 8, 13, 17, 19, 32, 42]
|
||||
>>> print(binary_search(test_list, 3))
|
||||
>>> binary_search(test_list, 3)
|
||||
False
|
||||
>>> print(binary_search(test_list, 13))
|
||||
>>> binary_search(test_list, 13)
|
||||
True
|
||||
>>> print(binary_search([4, 4, 5, 6, 7], 4))
|
||||
>>> binary_search([4, 4, 5, 6, 7], 4)
|
||||
True
|
||||
>>> print(binary_search([4, 4, 5, 6, 7], -10))
|
||||
>>> binary_search([4, 4, 5, 6, 7], -10)
|
||||
False
|
||||
>>> print(binary_search([-18, 2], -18))
|
||||
>>> binary_search([-18, 2], -18)
|
||||
True
|
||||
>>> print(binary_search([5], 5))
|
||||
>>> binary_search([5], 5)
|
||||
True
|
||||
>>> print(binary_search(['a', 'c', 'd'], 'c'))
|
||||
>>> binary_search(['a', 'c', 'd'], 'c')
|
||||
True
|
||||
>>> print(binary_search(['a', 'c', 'd'], 'f'))
|
||||
>>> binary_search(['a', 'c', 'd'], 'f')
|
||||
False
|
||||
>>> print(binary_search([], 1))
|
||||
>>> binary_search([], 1)
|
||||
False
|
||||
>>> print(binary_search([-.1, .1 , .8], .1))
|
||||
>>> binary_search([-.1, .1 , .8], .1)
|
||||
True
|
||||
>>> binary_search(range(-5000, 5000, 10), 80)
|
||||
True
|
||||
|
|
|
@ -16,19 +16,19 @@ def comp_and_swap(array: list[int], index1: int, index2: int, direction: int) ->
|
|||
|
||||
>>> arr = [12, 42, -21, 1]
|
||||
>>> comp_and_swap(arr, 1, 2, 1)
|
||||
>>> print(arr)
|
||||
>>> arr
|
||||
[12, -21, 42, 1]
|
||||
|
||||
>>> comp_and_swap(arr, 1, 2, 0)
|
||||
>>> print(arr)
|
||||
>>> arr
|
||||
[12, 42, -21, 1]
|
||||
|
||||
>>> comp_and_swap(arr, 0, 3, 1)
|
||||
>>> print(arr)
|
||||
>>> arr
|
||||
[1, 42, -21, 12]
|
||||
|
||||
>>> comp_and_swap(arr, 0, 3, 0)
|
||||
>>> print(arr)
|
||||
>>> arr
|
||||
[12, 42, -21, 1]
|
||||
"""
|
||||
if (direction == 1 and array[index1] > array[index2]) or (
|
||||
|
@ -46,11 +46,11 @@ def bitonic_merge(array: list[int], low: int, length: int, direction: int) -> No
|
|||
|
||||
>>> arr = [12, 42, -21, 1]
|
||||
>>> bitonic_merge(arr, 0, 4, 1)
|
||||
>>> print(arr)
|
||||
>>> arr
|
||||
[-21, 1, 12, 42]
|
||||
|
||||
>>> bitonic_merge(arr, 0, 4, 0)
|
||||
>>> print(arr)
|
||||
>>> arr
|
||||
[42, 12, 1, -21]
|
||||
"""
|
||||
if length > 1:
|
||||
|
|
|
@ -17,8 +17,8 @@ The array elements are taken from a Standard Normal Distribution, having mean =
|
|||
>>> mu, sigma = 0, 1 # mean and standard deviation
|
||||
>>> X = np.random.normal(mu, sigma, p)
|
||||
>>> np.save(outfile, X)
|
||||
>>> print('The array is')
|
||||
>>> print(X)
|
||||
>>> 'The array is'
|
||||
>>> X
|
||||
|
||||
```
|
||||
|
||||
|
|
|
@ -14,17 +14,17 @@ def rec_insertion_sort(collection: list, n: int):
|
|||
|
||||
>>> col = [1, 2, 1]
|
||||
>>> rec_insertion_sort(col, len(col))
|
||||
>>> print(col)
|
||||
>>> col
|
||||
[1, 1, 2]
|
||||
|
||||
>>> col = [2, 1, 0, -1, -2]
|
||||
>>> rec_insertion_sort(col, len(col))
|
||||
>>> print(col)
|
||||
>>> col
|
||||
[-2, -1, 0, 1, 2]
|
||||
|
||||
>>> col = [1]
|
||||
>>> rec_insertion_sort(col, len(col))
|
||||
>>> print(col)
|
||||
>>> col
|
||||
[1]
|
||||
"""
|
||||
# Checks if the entire collection has been sorted
|
||||
|
@ -41,17 +41,17 @@ def insert_next(collection: list, index: int):
|
|||
|
||||
>>> col = [3, 2, 4, 2]
|
||||
>>> insert_next(col, 1)
|
||||
>>> print(col)
|
||||
>>> col
|
||||
[2, 3, 4, 2]
|
||||
|
||||
>>> col = [3, 2, 3]
|
||||
>>> insert_next(col, 2)
|
||||
>>> print(col)
|
||||
>>> col
|
||||
[3, 2, 3]
|
||||
|
||||
>>> col = []
|
||||
>>> insert_next(col, 1)
|
||||
>>> print(col)
|
||||
>>> col
|
||||
[]
|
||||
"""
|
||||
# Checks order between adjacent elements
|
||||
|
|
|
@ -23,8 +23,6 @@ def get_subreddit_data(
|
|||
limit : Number of posts to fetch
|
||||
age : ["new", "top", "hot"]
|
||||
wanted_data : Get only the required data in the list
|
||||
|
||||
>>> pass
|
||||
"""
|
||||
wanted_data = wanted_data or []
|
||||
if invalid_search_terms := ", ".join(sorted(set(wanted_data) - valid_terms)):
|
||||
|
|
|
@ -19,7 +19,6 @@ def get_openlibrary_data(olid: str = "isbn/0140328726") -> dict:
|
|||
{'publishers': ['Puffin'], 'number_of_pages': 96, 'isbn_10': ['0140328726'], ...
|
||||
# >>> get_openlibrary_data(olid='/authors/OL7353617A') # doctest: +ELLIPSIS
|
||||
{'name': 'Adrian Brisku', 'created': {'type': '/type/datetime', ...
|
||||
>>> pass # Placate https://github.com/apps/algorithms-keeper
|
||||
"""
|
||||
new_olid = olid.strip().strip("/") # Remove leading/trailing whitespace & slashes
|
||||
if new_olid.count("/") != 1:
|
||||
|
@ -29,9 +28,7 @@ def get_openlibrary_data(olid: str = "isbn/0140328726") -> dict:
|
|||
|
||||
def summarize_book(ol_book_data: dict) -> dict:
|
||||
"""
|
||||
Given Open Library book data, return a summary as a Python dict.
|
||||
|
||||
>>> pass # Placate https://github.com/apps/algorithms-keeper
|
||||
Given Open Library book data, return a summary as a Python dict.
|
||||
"""
|
||||
desired_keys = {
|
||||
"title": "Title",
|
||||
|
|
Loading…
Reference in New Issue
Block a user