mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-17 06:48:09 +00:00
Added memoization function in fibonacci (#5856)
* Added memoization function in fibonacci * Minor changes
This commit is contained in:
parent
f4a16f607b
commit
65d3cfff2f
|
@ -1,13 +1,19 @@
|
|||
# fibonacci.py
|
||||
"""
|
||||
Calculates the Fibonacci sequence using iteration, recursion, and a simplified
|
||||
form of Binet's formula
|
||||
Calculates the Fibonacci sequence using iteration, recursion, memoization,
|
||||
and a simplified form of Binet's formula
|
||||
|
||||
NOTE 1: the iterative and recursive functions are more accurate than the Binet's
|
||||
formula function because the iterative function doesn't use floats
|
||||
NOTE 1: the iterative, recursive, memoization functions are more accurate than
|
||||
the Binet's formula function because the Binet formula function uses floats
|
||||
|
||||
NOTE 2: the Binet's formula function is much more limited in the size of inputs
|
||||
that it can handle due to the size limitations of Python floats
|
||||
|
||||
RESULTS: (n = 20)
|
||||
fib_iterative runtime: 0.0055 ms
|
||||
fib_recursive runtime: 6.5627 ms
|
||||
fib_memoization runtime: 0.0107 ms
|
||||
fib_binet runtime: 0.0174 ms
|
||||
"""
|
||||
|
||||
from math import sqrt
|
||||
|
@ -86,6 +92,39 @@ def fib_recursive(n: int) -> list[int]:
|
|||
return [fib_recursive_term(i) for i in range(n + 1)]
|
||||
|
||||
|
||||
def fib_memoization(n: int) -> list[int]:
|
||||
"""
|
||||
Calculates the first n (0-indexed) Fibonacci numbers using memoization
|
||||
>>> fib_memoization(0)
|
||||
[0]
|
||||
>>> fib_memoization(1)
|
||||
[0, 1]
|
||||
>>> fib_memoization(5)
|
||||
[0, 1, 1, 2, 3, 5]
|
||||
>>> fib_memoization(10)
|
||||
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]
|
||||
>>> fib_iterative(-1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
Exception: n is negative
|
||||
"""
|
||||
if n < 0:
|
||||
raise Exception("n is negative")
|
||||
# Cache must be outside recursuive function
|
||||
# other it will reset every time it calls itself.
|
||||
cache: dict[int, int] = {0: 0, 1: 1, 2: 1} # Prefilled cache
|
||||
|
||||
def rec_fn_memoized(num: int) -> int:
|
||||
if num in cache:
|
||||
return cache[num]
|
||||
|
||||
value = rec_fn_memoized(num - 1) + rec_fn_memoized(num - 2)
|
||||
cache[num] = value
|
||||
return value
|
||||
|
||||
return [rec_fn_memoized(i) for i in range(n + 1)]
|
||||
|
||||
|
||||
def fib_binet(n: int) -> list[int]:
|
||||
"""
|
||||
Calculates the first n (0-indexed) Fibonacci numbers using a simplified form
|
||||
|
@ -127,4 +166,5 @@ if __name__ == "__main__":
|
|||
num = 20
|
||||
time_func(fib_iterative, num)
|
||||
time_func(fib_recursive, num)
|
||||
time_func(fib_memoization, num)
|
||||
time_func(fib_binet, num)
|
||||
|
|
Loading…
Reference in New Issue
Block a user