mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Added Sieve of Eratosthenes algorithm for finding primes
This commit is contained in:
parent
3f505c5b39
commit
664b35252e
21
other/FindingPrimes.py
Normal file
21
other/FindingPrimes.py
Normal file
|
@ -0,0 +1,21 @@
|
||||||
|
'''
|
||||||
|
-The sieve of Eratosthenes is an algorithm used to find prime numbers, less than or equal to a given value.
|
||||||
|
-Illustration: https://upload.wikimedia.org/wikipedia/commons/b/b9/Sieve_of_Eratosthenes_animation.gif
|
||||||
|
'''
|
||||||
|
from math import sqrt
|
||||||
|
def SOE(n):
|
||||||
|
check = round(sqrt(n)) #Need not check for multiples past the square root of n
|
||||||
|
|
||||||
|
sieve = [False if i <2 else True for i in range(n+1)] #Set every index to False except for index 0 and 1
|
||||||
|
|
||||||
|
for i in range(2, check):
|
||||||
|
if(sieve[i] == True): #If i is a prime
|
||||||
|
for j in range(i+i, n+1, i): #Step through the list in increments of i(the multiples of the prime)
|
||||||
|
sieve[j] = False #Sets every multiple of i to False
|
||||||
|
|
||||||
|
for i in range(n+1):
|
||||||
|
if(sieve[i] == True):
|
||||||
|
print(i, end=" ")
|
||||||
|
|
||||||
|
n = int(input("Enter a positive number\n"))
|
||||||
|
SOE(n)
|
Loading…
Reference in New Issue
Block a user