mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-14 18:49:47 +00:00
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
ab2822788e
commit
67ccda1f0e
@ -4,8 +4,9 @@ import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from typing import Dict, List, Optional
|
||||
|
||||
|
||||
class DbScan:
|
||||
'''
|
||||
"""
|
||||
DBSCAN Algorithm :
|
||||
Density-Based Spatial Clustering Of Applications With Noise
|
||||
Refer this website for more details : https://en.wikipedia.org/wiki/DBSCAN
|
||||
@ -25,14 +26,28 @@ class DbScan:
|
||||
obj = dbscan.DbScan(minpts, radius, file)
|
||||
obj.print_dbscan()
|
||||
obj.plot_dbscan()
|
||||
'''
|
||||
def __init__(self, minpts : int, radius : int, file : Optional[str] =
|
||||
({'x': 3, 'y': 7}, {'x': 4, 'y': 6}, {'x': 5, 'y': 5},
|
||||
{'x': 6, 'y': 4},{'x': 7, 'y': 3}, {'x': 6, 'y': 2},
|
||||
{'x': 7, 'y': 2}, {'x': 8, 'y': 4},{'x': 3, 'y': 3},
|
||||
{'x': 2, 'y': 6}, {'x': 3, 'y': 5}, {'x': 2, 'y': 4})
|
||||
) -> None:
|
||||
'''
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
minpts: int,
|
||||
radius: int,
|
||||
file: Optional[str] = (
|
||||
{"x": 3, "y": 7},
|
||||
{"x": 4, "y": 6},
|
||||
{"x": 5, "y": 5},
|
||||
{"x": 6, "y": 4},
|
||||
{"x": 7, "y": 3},
|
||||
{"x": 6, "y": 2},
|
||||
{"x": 7, "y": 2},
|
||||
{"x": 8, "y": 4},
|
||||
{"x": 3, "y": 3},
|
||||
{"x": 2, "y": 6},
|
||||
{"x": 3, "y": 5},
|
||||
{"x": 2, "y": 4},
|
||||
),
|
||||
) -> None:
|
||||
"""
|
||||
Constructor
|
||||
|
||||
Args:
|
||||
@ -60,13 +75,14 @@ class DbScan:
|
||||
6 | 4
|
||||
7 | 3
|
||||
-----
|
||||
'''
|
||||
"""
|
||||
self.minpts = minpts
|
||||
self.radius = radius
|
||||
self.file = file
|
||||
self.dict1 = self.perform_dbscan()
|
||||
|
||||
def perform_dbscan(self) -> Dict[int, List[int]]:
|
||||
'''
|
||||
"""
|
||||
Args:
|
||||
-----------
|
||||
None
|
||||
@ -92,25 +108,30 @@ class DbScan:
|
||||
11 [2, 10, 11, 12]
|
||||
12 [9, 11, 12]
|
||||
|
||||
'''
|
||||
"""
|
||||
if type(self.file) is str:
|
||||
data = pd.read_csv(self.file)
|
||||
data = pd.read_csv(self.file)
|
||||
else:
|
||||
data = pd.DataFrame(list(self.file))
|
||||
e = self.radius
|
||||
dict1 = {}
|
||||
for i in range(len(data)):
|
||||
for j in range(len(data)):
|
||||
dist = math.sqrt(pow(data['x'][j] - data['x'][i],2)
|
||||
+ pow(data['y'][j] - data['y'][i],2))
|
||||
dist = math.sqrt(
|
||||
pow(data["x"][j] - data["x"][i], 2)
|
||||
+ pow(data["y"][j] - data["y"][i], 2)
|
||||
)
|
||||
if dist < e:
|
||||
if i+1 in dict1:
|
||||
dict1[i+1].append(j+1)
|
||||
if i + 1 in dict1:
|
||||
dict1[i + 1].append(j + 1)
|
||||
else:
|
||||
dict1[i+1] = [j+1,]
|
||||
dict1[i + 1] = [
|
||||
j + 1,
|
||||
]
|
||||
return dict1
|
||||
|
||||
def print_dbscan(self) -> None:
|
||||
'''
|
||||
"""
|
||||
Outputs:
|
||||
--------
|
||||
Prints each point and if it is a core or a noise (w/ border)
|
||||
@ -128,24 +149,25 @@ class DbScan:
|
||||
10 [1, 10, 11] ---> Noise ---> Border
|
||||
11 [2, 10, 11, 12] ---> Core
|
||||
12 [9, 11, 12] ---> Noise ---> Border
|
||||
'''
|
||||
"""
|
||||
for i in self.dict1:
|
||||
print(i," ",self.dict1[i], end=' ---> ')
|
||||
print(i, " ", self.dict1[i], end=" ---> ")
|
||||
if len(self.dict1[i]) >= self.minpts:
|
||||
print("Core")
|
||||
else:
|
||||
for j in self.dict1:
|
||||
if (
|
||||
i != j
|
||||
and len(self.dict1[j]) >= self.minpts
|
||||
i != j
|
||||
and len(self.dict1[j]) >= self.minpts
|
||||
and i in self.dict1[j]
|
||||
):
|
||||
print("Noise ---> Border")
|
||||
break
|
||||
else:
|
||||
print("Noise")
|
||||
|
||||
def plot_dbscan(self) -> None:
|
||||
'''
|
||||
"""
|
||||
Output:
|
||||
-------
|
||||
A matplotlib plot that show points as core and noise along
|
||||
@ -153,27 +175,38 @@ class DbScan:
|
||||
|
||||
>>> DbScan(4,1.9).plot_dbscan()
|
||||
Plotted Successfully
|
||||
'''
|
||||
"""
|
||||
if type(self.file) is str:
|
||||
data = pd.read_csv(self.file)
|
||||
data = pd.read_csv(self.file)
|
||||
else:
|
||||
data = pd.DataFrame(list(self.file))
|
||||
e = self.radius
|
||||
for i in self.dict1:
|
||||
if len(self.dict1[i]) >= self.minpts:
|
||||
plt.scatter(data['x'][i-1], data['y'][i-1], color='red')
|
||||
circle = plt.Circle((data['x'][i-1], data['y'][i-1]),
|
||||
e, color='blue', fill=False)
|
||||
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="red")
|
||||
circle = plt.Circle(
|
||||
(data["x"][i - 1], data["y"][i - 1]), e, color="blue", fill=False
|
||||
)
|
||||
plt.gca().add_artist(circle)
|
||||
plt.text(data['x'][i-1], data['y'][i-1],
|
||||
'P'+str(i), ha='center', va='bottom')
|
||||
plt.text(
|
||||
data["x"][i - 1],
|
||||
data["y"][i - 1],
|
||||
"P" + str(i),
|
||||
ha="center",
|
||||
va="bottom",
|
||||
)
|
||||
else:
|
||||
plt.scatter(data['x'][i-1], data['y'][i-1], color='green')
|
||||
plt.text(data['x'][i-1], data['y'][i-1],
|
||||
'P'+str(i), ha='center', va='bottom')
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
plt.title('DBSCAN Clustering')
|
||||
plt.legend(['Core','Noise'])
|
||||
plt.scatter(data["x"][i - 1], data["y"][i - 1], color="green")
|
||||
plt.text(
|
||||
data["x"][i - 1],
|
||||
data["y"][i - 1],
|
||||
"P" + str(i),
|
||||
ha="center",
|
||||
va="bottom",
|
||||
)
|
||||
plt.xlabel("X")
|
||||
plt.ylabel("Y")
|
||||
plt.title("DBSCAN Clustering")
|
||||
plt.legend(["Core", "Noise"])
|
||||
plt.show()
|
||||
print("Plotted Successfully")
|
||||
|
Loading…
x
Reference in New Issue
Block a user