mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Add project euler problem 50 (#3016)
* Add project euler problem 50 * Apply format changes * Descriptive function/parameter name and type hints Co-authored-by: Dhruv Manilawala <dhruvmanila@gmail.com>
This commit is contained in:
parent
c0d88d7f71
commit
686d837d3e
0
project_euler/problem_050/__init__.py
Normal file
0
project_euler/problem_050/__init__.py
Normal file
85
project_euler/problem_050/sol1.py
Normal file
85
project_euler/problem_050/sol1.py
Normal file
|
@ -0,0 +1,85 @@
|
|||
"""
|
||||
Project Euler Problem 50: https://projecteuler.net/problem=50
|
||||
|
||||
Consecutive prime sum
|
||||
|
||||
The prime 41, can be written as the sum of six consecutive primes:
|
||||
41 = 2 + 3 + 5 + 7 + 11 + 13
|
||||
|
||||
This is the longest sum of consecutive primes that adds to a prime below
|
||||
one-hundred.
|
||||
|
||||
The longest sum of consecutive primes below one-thousand that adds to a prime,
|
||||
contains 21 terms, and is equal to 953.
|
||||
|
||||
Which prime, below one-million, can be written as the sum of the most
|
||||
consecutive primes?
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
|
||||
def prime_sieve(limit: int) -> List[int]:
|
||||
"""
|
||||
Sieve of Erotosthenes
|
||||
Function to return all the prime numbers up to a number 'limit'
|
||||
https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes
|
||||
|
||||
>>> prime_sieve(3)
|
||||
[2]
|
||||
|
||||
>>> prime_sieve(50)
|
||||
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
|
||||
"""
|
||||
is_prime = [True] * limit
|
||||
is_prime[0] = False
|
||||
is_prime[1] = False
|
||||
is_prime[2] = True
|
||||
|
||||
for i in range(3, int(limit ** 0.5 + 1), 2):
|
||||
index = i * 2
|
||||
while index < limit:
|
||||
is_prime[index] = False
|
||||
index = index + i
|
||||
|
||||
primes = [2]
|
||||
|
||||
for i in range(3, limit, 2):
|
||||
if is_prime[i]:
|
||||
primes.append(i)
|
||||
|
||||
return primes
|
||||
|
||||
|
||||
def solution(ceiling: int = 1_000_000) -> int:
|
||||
"""
|
||||
Returns the biggest prime, below the celing, that can be written as the sum
|
||||
of consecutive the most consecutive primes.
|
||||
|
||||
>>> solution(500)
|
||||
499
|
||||
|
||||
>>> solution(1_000)
|
||||
953
|
||||
|
||||
>>> solution(10_000)
|
||||
9521
|
||||
"""
|
||||
primes = prime_sieve(ceiling)
|
||||
length = 0
|
||||
largest = 0
|
||||
|
||||
for i in range(len(primes)):
|
||||
for j in range(i + length, len(primes)):
|
||||
sol = sum(primes[i:j])
|
||||
if sol >= ceiling:
|
||||
break
|
||||
|
||||
if sol in primes:
|
||||
length = j - i
|
||||
largest = sol
|
||||
|
||||
return largest
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
Loading…
Reference in New Issue
Block a user