Update binary_search_tree.py

This commit is contained in:
Christian Clauss 2023-10-27 01:10:38 +02:00 committed by GitHub
parent fe4aad0ec9
commit 6937b4b258
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -10,74 +10,65 @@ Example
/ \ /
4 7 13
>>> t = BinarySearchTree()
>>> t.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree()))
8 3 1 6 4 7 10 14 13
>>> tuple(i.value for i in t.traversal_tree(inorder))
>>> tree = BinarySearchTree()
>>> tree.insert(8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> tuple(node.value for node in tree.traversal_tree()) # inorder traversal (sorted)
(1, 3, 4, 6, 7, 8, 10, 13, 14)
>>> tuple(t)
(1, 3, 4, 6, 7, 8, 10, 13, 14)
>>> t.find_kth_smallest(3, t.root)
4
>>> tuple(t)[3-1]
4
>>> tuple(node.value for node in tree.traversal_tree(postorder))
(1, 4, 7, 6, 3, 13, 14, 10, 8)
>>> print(" ".join(repr(i.value) for i in t.traversal_tree(postorder)))
1 4 7 6 3 13 14 10 8
>>> t.remove(20)
>>> tuple(tree)
(1, 3, 4, 6, 7, 8, 10, 13, 14)
>>> iter_t = iter(tree)
>>> next(iter_t)
1
>>> next(iter_t)
3
>>> tuple(tree)[3-1] # 3rd smallest element in a zero-indexed tuple
4
>>> sum(tree)
66
>>> tuple(node.value for node in tree.traversal_tree(postorder))
(1, 4, 7, 6, 3, 13, 14, 10, 8)
>>> tree.remove(20)
Traceback (most recent call last):
...
ValueError: Value 20 not found
>>> BinarySearchTree().search(6)
Traceback (most recent call last):
...
IndexError: Warning: Tree is empty! please use another.
Other example:
>>> testlist = (8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> t = BinarySearchTree()
>>> for i in testlist:
... t.insert(i)
>>> values = (8, 3, 6, 1, 10, 14, 13, 4, 7)
>>> tree = BinarySearchTree()
>>> for value in values:
... tree.insert(value)
Prints all the elements of the list in order traversal
>>> print(t)
>>> print(tree)
{'8': ({'3': (1, {'6': (4, 7)})}, {'10': (None, {'14': (13, None)})})}
Test existence
>>> t.search(6) is not None
>>> 6 in tree
True
>>> 6 in t
True
>>> t.search(-1) is not None
False
>>> -1 in t
>>> -1 in tree
False
>>> t.search(6).is_right
>>> tree.search(6).is_right
True
>>> t.search(1).is_right
>>> tree.search(1).is_right
False
>>> t.get_max().value
>>> max(tree)
14
>>> max(t)
14
>>> t.get_min().value
>>> min(tree)
1
>>> min(t)
1
>>> t.empty()
>>> not tree
False
>>> not t
False
>>> for i in testlist:
... t.remove(i)
>>> t.empty()
True
>>> not t
>>> for value in values:
... tree.remove(value)
>>> list(tree)
[]
>>> not tree
True
"""
from __future__ import annotations
@ -144,15 +135,12 @@ class BinarySearchTree:
else:
self.root = new_children
def empty(self) -> bool:
return self.root is None
def __insert(self, value) -> None:
"""
Insert a new node in Binary Search Tree with value label
"""
new_node = Node(value) # create a new Node
if self.empty(): # if Tree is empty
if not self: # if Tree is empty
self.root = new_node # set its root
else: # Tree is not empty
parent_node = self.root # from root
@ -178,47 +166,32 @@ class BinarySearchTree:
self.__insert(value)
def search(self, value) -> Node | None:
if self.empty():
if not self:
raise IndexError("Warning: Tree is empty! please use another.")
else:
node = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
node = node.left if value < node.value else node.right
return node
node = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node and node.value is not value:
node = node.left if value < node.value else node.right
return node
def get_max(self, node: Node | None = None) -> Node | None:
"""
We go deep on the right branch
"""
if node is None:
if self.root is None:
if not self.root:
return None
node = self.root
if not self.empty():
if self:
while node.right is not None:
node = node.right
return node
def get_min(self, node: Node | None = None) -> Node | None:
"""
We go deep on the left branch
"""
if node is None:
node = self.root
if self.root is None:
return None
if not self.empty():
node = self.root
while node.left is not None:
node = node.left
return node
def remove(self, value: int) -> None:
# Look for the node with that label
node = self.search(value)
if node is None:
if not node:
msg = f"Value {value} not found"
raise ValueError(msg)
@ -229,29 +202,18 @@ class BinarySearchTree:
elif node.right is None: # Has only left children
self.__reassign_nodes(node, node.left)
else:
predecessor = self.get_max(
node.left
) # Gets the max value of the left branch
# Gets the max value of the left branch
predecessor = self.get_max(node.left)
self.remove(predecessor.value) # type: ignore
node.value = (
predecessor.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
# Assigns the value to the node to delete and keep tree structure
node.value = predecessor.value # type: ignore
def preorder_traverse(self, node: Node | None) -> Iterable:
if node is not None:
@classmethod
def preorder_traverse(cls, node: Node | None) -> Iterable:
if node:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left)
yield from self.preorder_traverse(node.right)
def traversal_tree(self, traversal_function=None) -> Any:
"""
This function traversal the tree.
You can pass a function to traversal the tree as needed by client code
"""
if traversal_function is None:
return self.preorder_traverse(self.root)
else:
return traversal_function(self.root)
yield from cls.preorder_traverse(node.left)
yield from cls.preorder_traverse(node.right)
def inorder(self, arr: list, node: Node | None) -> None:
"""Perform an inorder traversal and append values of the nodes to
@ -261,11 +223,12 @@ class BinarySearchTree:
arr.append(node.value)
self.inorder(arr, node.right)
def find_kth_smallest(self, k: int, node: Node) -> int:
"""Return the kth smallest element in a binary search tree"""
arr: list[int] = []
self.inorder(arr, node) # append all values to list using inorder traversal
return arr[k - 1]
def traversal_tree(self, traversal_function=None) -> Any:
"""
This function traversal the tree.
You can pass a function to traversal the tree as needed by client code
"""
return (traversal_function or inorder)(self.root)
def inorder(curr_node: Node | None) -> list[Node]:
@ -273,17 +236,17 @@ def inorder(curr_node: Node | None) -> list[Node]:
inorder (left, self, right)
"""
node_list = []
if curr_node is not None:
if curr_node:
node_list = inorder(curr_node.left) + [curr_node] + inorder(curr_node.right)
return node_list
def postorder(curr_node: Node | None) -> list[Node]:
"""
postOrder (left, right, self)
postorder (left, right, self)
"""
node_list = []
if curr_node is not None:
if curr_node:
node_list = postorder(curr_node.left) + postorder(curr_node.right) + [curr_node]
return node_list