mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-07 01:50:55 +00:00
Handle mypy errors
This commit is contained in:
parent
9d3da1ae4f
commit
694ba686e4
|
@ -11,14 +11,12 @@ https://en.wikipedia.org/wiki/Naive_Bayes_classifier
|
|||
import doctest
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
from scipy import sparse
|
||||
from sklearn.datasets import fetch_20newsgroups
|
||||
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||
from sklearn.metrics import accuracy_score
|
||||
|
||||
|
||||
def group_indices_by_target(targets: npt.ArrayLike) -> dict:
|
||||
def group_indices_by_target(targets):
|
||||
"""
|
||||
Associates to each target label the indices of the examples with that label
|
||||
|
||||
|
@ -48,13 +46,13 @@ def group_indices_by_target(targets: npt.ArrayLike) -> dict:
|
|||
|
||||
|
||||
class MultinomialNBClassifier:
|
||||
def __init__(self, alpha: int = 1):
|
||||
def __init__(self, alpha=1):
|
||||
self.classes = None
|
||||
self.features_probs = None
|
||||
self.priors = None
|
||||
self.alpha = alpha
|
||||
|
||||
def fit(self, data: sparse.csr_matrix, targets: npt.ArrayLike) -> None:
|
||||
def fit(self, data, targets):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
|
@ -81,7 +79,7 @@ class MultinomialNBClassifier:
|
|||
tot_features_count + self.alpha * n_features
|
||||
)
|
||||
|
||||
def predict(self, data: sparse.csr_matrix) -> np.ndarray:
|
||||
def predict(self, data):
|
||||
"""
|
||||
Parameters
|
||||
----------
|
||||
|
@ -97,6 +95,7 @@ class MultinomialNBClassifier:
|
|||
----------
|
||||
Let's test the function following an example taken from the documentation
|
||||
of the MultinomialNB model from sklearn
|
||||
>>> from scipy import sparse
|
||||
>>> rng = np.random.RandomState(1)
|
||||
>>> data = rng.randint(5, size=(6, 100))
|
||||
>>> data = sparse.csr_matrix(data)
|
||||
|
@ -119,7 +118,7 @@ class MultinomialNBClassifier:
|
|||
return np.array(y_pred)
|
||||
|
||||
|
||||
def main() -> None:
|
||||
def main():
|
||||
newsgroups_train = fetch_20newsgroups(subset="train")
|
||||
newsgroups_test = fetch_20newsgroups(subset="test")
|
||||
x_train = newsgroups_train["data"]
|
||||
|
|
Loading…
Reference in New Issue
Block a user