mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
Merge pull request #139 from anuragkumarak95/master
added k means clustering algorithm, usage doc inside.
This commit is contained in:
commit
6bc30c7182
172
machine_learning/k_means_clust.py
Normal file
172
machine_learning/k_means_clust.py
Normal file
|
@ -0,0 +1,172 @@
|
|||
'''README, Author - Anurag Kumar(mailto:anuragkumarak95@gmail.com)
|
||||
|
||||
Requirements:
|
||||
- sklearn
|
||||
- numpy
|
||||
- matplotlib
|
||||
|
||||
Python:
|
||||
- 3.5
|
||||
|
||||
Inputs:
|
||||
- X , a 2D numpy array of features.
|
||||
- k , number of clusters to create.
|
||||
- initial_centroids , initial centroid values generated by utility function(mentioned in usage).
|
||||
- maxiter , maximum number of iterations to process.
|
||||
- heterogeneity , empty list that will be filled with hetrogeneity values if passed to kmeans func.
|
||||
|
||||
Usage:
|
||||
1. define 'k' value, 'X' features array and 'hetrogeneity' empty list
|
||||
|
||||
2. create initial_centroids,
|
||||
initial_centroids = get_initial_centroids(
|
||||
X,
|
||||
k,
|
||||
seed=0 # seed value for initial centroid generation, None for randomness(default=None)
|
||||
)
|
||||
|
||||
3. find centroids and clusters using kmeans function.
|
||||
|
||||
centroids, cluster_assignment = kmeans(
|
||||
X,
|
||||
k,
|
||||
initial_centroids,
|
||||
maxiter=400,
|
||||
record_heterogeneity=heterogeneity,
|
||||
verbose=True # whether to print logs in console or not.(default=False)
|
||||
)
|
||||
|
||||
|
||||
4. Plot the loss function, hetrogeneity values for every iteration saved in hetrogeneity list.
|
||||
plot_heterogeneity(
|
||||
heterogeneity,
|
||||
k
|
||||
)
|
||||
|
||||
5. Have fun..
|
||||
|
||||
'''
|
||||
from sklearn.metrics import pairwise_distances
|
||||
import numpy as np
|
||||
|
||||
TAG = 'K-MEANS-CLUST/ '
|
||||
|
||||
def get_initial_centroids(data, k, seed=None):
|
||||
'''Randomly choose k data points as initial centroids'''
|
||||
if seed is not None: # useful for obtaining consistent results
|
||||
np.random.seed(seed)
|
||||
n = data.shape[0] # number of data points
|
||||
|
||||
# Pick K indices from range [0, N).
|
||||
rand_indices = np.random.randint(0, n, k)
|
||||
|
||||
# Keep centroids as dense format, as many entries will be nonzero due to averaging.
|
||||
# As long as at least one document in a cluster contains a word,
|
||||
# it will carry a nonzero weight in the TF-IDF vector of the centroid.
|
||||
centroids = data[rand_indices,:]
|
||||
|
||||
return centroids
|
||||
|
||||
def centroid_pairwise_dist(X,centroids):
|
||||
return pairwise_distances(X,centroids,metric='euclidean')
|
||||
|
||||
def assign_clusters(data, centroids):
|
||||
|
||||
# Compute distances between each data point and the set of centroids:
|
||||
# Fill in the blank (RHS only)
|
||||
distances_from_centroids = centroid_pairwise_dist(data,centroids)
|
||||
|
||||
# Compute cluster assignments for each data point:
|
||||
# Fill in the blank (RHS only)
|
||||
cluster_assignment = np.argmin(distances_from_centroids,axis=1)
|
||||
|
||||
return cluster_assignment
|
||||
|
||||
def revise_centroids(data, k, cluster_assignment):
|
||||
new_centroids = []
|
||||
for i in range(k):
|
||||
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
|
||||
member_data_points = data[cluster_assignment==i]
|
||||
# Compute the mean of the data points. Fill in the blank (RHS only)
|
||||
centroid = member_data_points.mean(axis=0)
|
||||
new_centroids.append(centroid)
|
||||
new_centroids = np.array(new_centroids)
|
||||
|
||||
return new_centroids
|
||||
|
||||
def compute_heterogeneity(data, k, centroids, cluster_assignment):
|
||||
|
||||
heterogeneity = 0.0
|
||||
for i in range(k):
|
||||
|
||||
# Select all data points that belong to cluster i. Fill in the blank (RHS only)
|
||||
member_data_points = data[cluster_assignment==i, :]
|
||||
|
||||
if member_data_points.shape[0] > 0: # check if i-th cluster is non-empty
|
||||
# Compute distances from centroid to data points (RHS only)
|
||||
distances = pairwise_distances(member_data_points, [centroids[i]], metric='euclidean')
|
||||
squared_distances = distances**2
|
||||
heterogeneity += np.sum(squared_distances)
|
||||
|
||||
return heterogeneity
|
||||
|
||||
from matplotlib import pyplot as plt
|
||||
def plot_heterogeneity(heterogeneity, k):
|
||||
plt.figure(figsize=(7,4))
|
||||
plt.plot(heterogeneity, linewidth=4)
|
||||
plt.xlabel('# Iterations')
|
||||
plt.ylabel('Heterogeneity')
|
||||
plt.title('Heterogeneity of clustering over time, K={0:d}'.format(k))
|
||||
plt.rcParams.update({'font.size': 16})
|
||||
plt.show()
|
||||
|
||||
def kmeans(data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False):
|
||||
'''This function runs k-means on given data and initial set of centroids.
|
||||
maxiter: maximum number of iterations to run.(default=500)
|
||||
record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations
|
||||
if None, do not store the history.
|
||||
verbose: if True, print how many data points changed their cluster labels in each iteration'''
|
||||
centroids = initial_centroids[:]
|
||||
prev_cluster_assignment = None
|
||||
|
||||
for itr in range(maxiter):
|
||||
if verbose:
|
||||
print(itr, end='')
|
||||
|
||||
# 1. Make cluster assignments using nearest centroids
|
||||
cluster_assignment = assign_clusters(data,centroids)
|
||||
|
||||
# 2. Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster.
|
||||
centroids = revise_centroids(data,k, cluster_assignment)
|
||||
|
||||
# Check for convergence: if none of the assignments changed, stop
|
||||
if prev_cluster_assignment is not None and \
|
||||
(prev_cluster_assignment==cluster_assignment).all():
|
||||
break
|
||||
|
||||
# Print number of new assignments
|
||||
if prev_cluster_assignment is not None:
|
||||
num_changed = np.sum(prev_cluster_assignment!=cluster_assignment)
|
||||
if verbose:
|
||||
print(' {0:5d} elements changed their cluster assignment.'.format(num_changed))
|
||||
|
||||
# Record heterogeneity convergence metric
|
||||
if record_heterogeneity is not None:
|
||||
# YOUR CODE HERE
|
||||
score = compute_heterogeneity(data,k,centroids,cluster_assignment)
|
||||
record_heterogeneity.append(score)
|
||||
|
||||
prev_cluster_assignment = cluster_assignment[:]
|
||||
|
||||
return centroids, cluster_assignment
|
||||
|
||||
# Mock test below
|
||||
if False: # change to true to run this test case.
|
||||
import sklearn.datasets as ds
|
||||
dataset = ds.load_iris()
|
||||
k = 3
|
||||
heterogeneity = []
|
||||
initial_centroids = get_initial_centroids(dataset['data'], k, seed=0)
|
||||
centroids, cluster_assignment = kmeans(dataset['data'], k, initial_centroids, maxiter=400,
|
||||
record_heterogeneity=heterogeneity, verbose=True)
|
||||
plot_heterogeneity(heterogeneity, k)
|
Loading…
Reference in New Issue
Block a user