mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-17 14:58:10 +00:00
add example to estimate area under line using montecarlo (#1782)
* add example to estimate area under line using montecarlo * separate estimate func and print statements * use mean from stats package * avoid creating extra variable * min_value: float=0.0, max_value: float=1.0 * Update montecarlo.py * Update montecarlo.py * Rename montecarlo.py to monte_carlo.py * Update monte_carlo.py Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
59bf115aa1
commit
6d7cbdacb1
74
maths/monte_carlo.py
Normal file
74
maths/monte_carlo.py
Normal file
|
@ -0,0 +1,74 @@
|
||||||
|
"""
|
||||||
|
@author: MatteoRaso
|
||||||
|
"""
|
||||||
|
from numpy import pi, sqrt
|
||||||
|
from random import uniform
|
||||||
|
from statistics import mean
|
||||||
|
|
||||||
|
|
||||||
|
def pi_estimator(iterations: int):
|
||||||
|
"""
|
||||||
|
An implementation of the Monte Carlo method used to find pi.
|
||||||
|
1. Draw a 2x2 square centred at (0,0).
|
||||||
|
2. Inscribe a circle within the square.
|
||||||
|
3. For each iteration, place a dot anywhere in the square.
|
||||||
|
a. Record the number of dots within the circle.
|
||||||
|
4. After all the dots are placed, divide the dots in the circle by the total.
|
||||||
|
5. Multiply this value by 4 to get your estimate of pi.
|
||||||
|
6. Print the estimated and numpy value of pi
|
||||||
|
"""
|
||||||
|
# A local function to see if a dot lands in the circle.
|
||||||
|
def in_circle(x: float, y: float) -> bool:
|
||||||
|
distance_from_centre = sqrt((x ** 2) + (y ** 2))
|
||||||
|
# Our circle has a radius of 1, so a distance
|
||||||
|
# greater than 1 would land outside the circle.
|
||||||
|
return distance_from_centre <= 1
|
||||||
|
|
||||||
|
# The proportion of guesses that landed in the circle
|
||||||
|
proportion = mean(
|
||||||
|
int(in_circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for _ in range(iterations)
|
||||||
|
)
|
||||||
|
# The ratio of the area for circle to square is pi/4.
|
||||||
|
pi_estimate = proportion * 4
|
||||||
|
print("The estimated value of pi is ", pi_estimate)
|
||||||
|
print("The numpy value of pi is ", pi)
|
||||||
|
print("The total error is ", abs(pi - pi_estimate))
|
||||||
|
|
||||||
|
|
||||||
|
def area_under_line_estimator(iterations: int,
|
||||||
|
min_value: float=0.0,
|
||||||
|
max_value: float=1.0) -> float:
|
||||||
|
"""
|
||||||
|
An implementation of the Monte Carlo method to find area under
|
||||||
|
y = x where x lies between min_value to max_value
|
||||||
|
1. Let x be a uniformly distributed random variable between min_value to max_value
|
||||||
|
2. Expected value of x = integration of x from min_value to max_value
|
||||||
|
3. Finding expected value of x:
|
||||||
|
a. Repeatedly draw x from uniform distribution
|
||||||
|
b. Expected value = average of those values
|
||||||
|
4. Actual value = 1/2
|
||||||
|
5. Returns estimated value
|
||||||
|
"""
|
||||||
|
return mean(uniform(min_value, max_value) for _ in range(iterations))
|
||||||
|
|
||||||
|
|
||||||
|
def area_under_line_estimator_check(iterations: int) -> None:
|
||||||
|
"""
|
||||||
|
Checks estimation error for area_under_line_estimator func
|
||||||
|
1. Calls "area_under_line_estimator" function
|
||||||
|
2. Compares with the expected value
|
||||||
|
3. Prints estimated, expected and error value
|
||||||
|
"""
|
||||||
|
estimate = area_under_line_estimator(iterations)
|
||||||
|
print("******************")
|
||||||
|
print("Estimating area under y=x where x varies from 0 to 1")
|
||||||
|
print("Expected value is ", 0.5)
|
||||||
|
print("Estimated value is ", estimate)
|
||||||
|
print("Total error is ", abs(estimate - 0.5))
|
||||||
|
print("******************")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import doctest
|
||||||
|
|
||||||
|
doctest.testmod()
|
|
@ -1,43 +0,0 @@
|
||||||
"""
|
|
||||||
@author: MatteoRaso
|
|
||||||
"""
|
|
||||||
from numpy import pi, sqrt
|
|
||||||
from random import uniform
|
|
||||||
|
|
||||||
|
|
||||||
def pi_estimator(iterations: int):
|
|
||||||
"""An implementation of the Monte Carlo method used to find pi.
|
|
||||||
1. Draw a 2x2 square centred at (0,0).
|
|
||||||
2. Inscribe a circle within the square.
|
|
||||||
3. For each iteration, place a dot anywhere in the square.
|
|
||||||
3.1 Record the number of dots within the circle.
|
|
||||||
4. After all the dots are placed, divide the dots in the circle by the total.
|
|
||||||
5. Multiply this value by 4 to get your estimate of pi.
|
|
||||||
6. Print the estimated and numpy value of pi
|
|
||||||
"""
|
|
||||||
|
|
||||||
circle_dots = 0
|
|
||||||
|
|
||||||
# A local function to see if a dot lands in the circle.
|
|
||||||
def circle(x: float, y: float):
|
|
||||||
distance_from_centre = sqrt((x ** 2) + (y ** 2))
|
|
||||||
# Our circle has a radius of 1, so a distance greater than 1 would land outside the circle.
|
|
||||||
return distance_from_centre <= 1
|
|
||||||
|
|
||||||
circle_dots = sum(
|
|
||||||
int(circle(uniform(-1.0, 1.0), uniform(-1.0, 1.0))) for i in range(iterations)
|
|
||||||
)
|
|
||||||
|
|
||||||
# The proportion of guesses that landed within the circle
|
|
||||||
proportion = circle_dots / iterations
|
|
||||||
# The ratio of the area for circle to square is pi/4.
|
|
||||||
pi_estimate = proportion * 4
|
|
||||||
print("The estimated value of pi is ", pi_estimate)
|
|
||||||
print("The numpy value of pi is ", pi)
|
|
||||||
print("The total error is ", abs(pi - pi_estimate))
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import doctest
|
|
||||||
|
|
||||||
doctest.testmod()
|
|
Loading…
Reference in New Issue
Block a user