Move files for special numbers to own directory (#10714)

This commit is contained in:
Tianyi Zheng 2023-10-20 02:17:31 -04:00 committed by GitHub
parent 197604898b
commit 6f2d6f72d5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
15 changed files with 310 additions and 310 deletions

View File

@ -1,98 +1,98 @@
""" """
An Armstrong number is equal to the sum of its own digits each raised to the An Armstrong number is equal to the sum of its own digits each raised to the
power of the number of digits. power of the number of digits.
For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370. For example, 370 is an Armstrong number because 3*3*3 + 7*7*7 + 0*0*0 = 370.
Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers. Armstrong numbers are also called Narcissistic numbers and Pluperfect numbers.
On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188 On-Line Encyclopedia of Integer Sequences entry: https://oeis.org/A005188
""" """
PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401) PASSING = (1, 153, 370, 371, 1634, 24678051, 115132219018763992565095597973971522401)
FAILING: tuple = (-153, -1, 0, 1.2, 200, "A", [], {}, None) FAILING: tuple = (-153, -1, 0, 1.2, 200, "A", [], {}, None)
def armstrong_number(n: int) -> bool: def armstrong_number(n: int) -> bool:
""" """
Return True if n is an Armstrong number or False if it is not. Return True if n is an Armstrong number or False if it is not.
>>> all(armstrong_number(n) for n in PASSING) >>> all(armstrong_number(n) for n in PASSING)
True True
>>> any(armstrong_number(n) for n in FAILING) >>> any(armstrong_number(n) for n in FAILING)
False False
""" """
if not isinstance(n, int) or n < 1: if not isinstance(n, int) or n < 1:
return False return False
# Initialization of sum and number of digits. # Initialization of sum and number of digits.
total = 0 total = 0
number_of_digits = 0 number_of_digits = 0
temp = n temp = n
# Calculation of digits of the number # Calculation of digits of the number
number_of_digits = len(str(n)) number_of_digits = len(str(n))
# Dividing number into separate digits and find Armstrong number # Dividing number into separate digits and find Armstrong number
temp = n temp = n
while temp > 0: while temp > 0:
rem = temp % 10 rem = temp % 10
total += rem**number_of_digits total += rem**number_of_digits
temp //= 10 temp //= 10
return n == total return n == total
def pluperfect_number(n: int) -> bool: def pluperfect_number(n: int) -> bool:
"""Return True if n is a pluperfect number or False if it is not """Return True if n is a pluperfect number or False if it is not
>>> all(armstrong_number(n) for n in PASSING) >>> all(armstrong_number(n) for n in PASSING)
True True
>>> any(armstrong_number(n) for n in FAILING) >>> any(armstrong_number(n) for n in FAILING)
False False
""" """
if not isinstance(n, int) or n < 1: if not isinstance(n, int) or n < 1:
return False return False
# Init a "histogram" of the digits # Init a "histogram" of the digits
digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] digit_histogram = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
digit_total = 0 digit_total = 0
total = 0 total = 0
temp = n temp = n
while temp > 0: while temp > 0:
temp, rem = divmod(temp, 10) temp, rem = divmod(temp, 10)
digit_histogram[rem] += 1 digit_histogram[rem] += 1
digit_total += 1 digit_total += 1
for cnt, i in zip(digit_histogram, range(len(digit_histogram))): for cnt, i in zip(digit_histogram, range(len(digit_histogram))):
total += cnt * i**digit_total total += cnt * i**digit_total
return n == total return n == total
def narcissistic_number(n: int) -> bool: def narcissistic_number(n: int) -> bool:
"""Return True if n is a narcissistic number or False if it is not. """Return True if n is a narcissistic number or False if it is not.
>>> all(armstrong_number(n) for n in PASSING) >>> all(armstrong_number(n) for n in PASSING)
True True
>>> any(armstrong_number(n) for n in FAILING) >>> any(armstrong_number(n) for n in FAILING)
False False
""" """
if not isinstance(n, int) or n < 1: if not isinstance(n, int) or n < 1:
return False return False
expo = len(str(n)) # the power that all digits will be raised to expo = len(str(n)) # the power that all digits will be raised to
# check if sum of each digit multiplied expo times is equal to number # check if sum of each digit multiplied expo times is equal to number
return n == sum(int(i) ** expo for i in str(n)) return n == sum(int(i) ** expo for i in str(n))
def main(): def main():
""" """
Request that user input an integer and tell them if it is Armstrong number. Request that user input an integer and tell them if it is Armstrong number.
""" """
num = int(input("Enter an integer to see if it is an Armstrong number: ").strip()) num = int(input("Enter an integer to see if it is an Armstrong number: ").strip())
print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if armstrong_number(num) else 'not '}an Armstrong number.")
print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if narcissistic_number(num) else 'not '}an Armstrong number.")
print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.") print(f"{num} is {'' if pluperfect_number(num) else 'not '}an Armstrong number.")
if __name__ == "__main__": if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()
main() main()

View File

@ -1,158 +1,158 @@
""" """
A harshad number (or more specifically an n-harshad number) is a number that's A harshad number (or more specifically an n-harshad number) is a number that's
divisible by the sum of its digits in some given base n. divisible by the sum of its digits in some given base n.
Reference: https://en.wikipedia.org/wiki/Harshad_number Reference: https://en.wikipedia.org/wiki/Harshad_number
""" """
def int_to_base(number: int, base: int) -> str: def int_to_base(number: int, base: int) -> str:
""" """
Convert a given positive decimal integer to base 'base'. Convert a given positive decimal integer to base 'base'.
Where 'base' ranges from 2 to 36. Where 'base' ranges from 2 to 36.
Examples: Examples:
>>> int_to_base(23, 2) >>> int_to_base(23, 2)
'10111' '10111'
>>> int_to_base(58, 5) >>> int_to_base(58, 5)
'213' '213'
>>> int_to_base(167, 16) >>> int_to_base(167, 16)
'A7' 'A7'
>>> # bases below 2 and beyond 36 will error >>> # bases below 2 and beyond 36 will error
>>> int_to_base(98, 1) >>> int_to_base(98, 1)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: 'base' must be between 2 and 36 inclusive ValueError: 'base' must be between 2 and 36 inclusive
>>> int_to_base(98, 37) >>> int_to_base(98, 37)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: 'base' must be between 2 and 36 inclusive ValueError: 'base' must be between 2 and 36 inclusive
""" """
if base < 2 or base > 36: if base < 2 or base > 36:
raise ValueError("'base' must be between 2 and 36 inclusive") raise ValueError("'base' must be between 2 and 36 inclusive")
digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
result = "" result = ""
if number < 0: if number < 0:
raise ValueError("number must be a positive integer") raise ValueError("number must be a positive integer")
while number > 0: while number > 0:
number, remainder = divmod(number, base) number, remainder = divmod(number, base)
result = digits[remainder] + result result = digits[remainder] + result
if result == "": if result == "":
result = "0" result = "0"
return result return result
def sum_of_digits(num: int, base: int) -> str: def sum_of_digits(num: int, base: int) -> str:
""" """
Calculate the sum of digit values in a positive integer Calculate the sum of digit values in a positive integer
converted to the given 'base'. converted to the given 'base'.
Where 'base' ranges from 2 to 36. Where 'base' ranges from 2 to 36.
Examples: Examples:
>>> sum_of_digits(103, 12) >>> sum_of_digits(103, 12)
'13' '13'
>>> sum_of_digits(1275, 4) >>> sum_of_digits(1275, 4)
'30' '30'
>>> sum_of_digits(6645, 2) >>> sum_of_digits(6645, 2)
'1001' '1001'
>>> # bases below 2 and beyond 36 will error >>> # bases below 2 and beyond 36 will error
>>> sum_of_digits(543, 1) >>> sum_of_digits(543, 1)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: 'base' must be between 2 and 36 inclusive ValueError: 'base' must be between 2 and 36 inclusive
>>> sum_of_digits(543, 37) >>> sum_of_digits(543, 37)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: 'base' must be between 2 and 36 inclusive ValueError: 'base' must be between 2 and 36 inclusive
""" """
if base < 2 or base > 36: if base < 2 or base > 36:
raise ValueError("'base' must be between 2 and 36 inclusive") raise ValueError("'base' must be between 2 and 36 inclusive")
num_str = int_to_base(num, base) num_str = int_to_base(num, base)
res = sum(int(char, base) for char in num_str) res = sum(int(char, base) for char in num_str)
res_str = int_to_base(res, base) res_str = int_to_base(res, base)
return res_str return res_str
def harshad_numbers_in_base(limit: int, base: int) -> list[str]: def harshad_numbers_in_base(limit: int, base: int) -> list[str]:
""" """
Finds all Harshad numbers smaller than num in base 'base'. Finds all Harshad numbers smaller than num in base 'base'.
Where 'base' ranges from 2 to 36. Where 'base' ranges from 2 to 36.
Examples: Examples:
>>> harshad_numbers_in_base(15, 2) >>> harshad_numbers_in_base(15, 2)
['1', '10', '100', '110', '1000', '1010', '1100'] ['1', '10', '100', '110', '1000', '1010', '1100']
>>> harshad_numbers_in_base(12, 34) >>> harshad_numbers_in_base(12, 34)
['1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B'] ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B']
>>> harshad_numbers_in_base(12, 4) >>> harshad_numbers_in_base(12, 4)
['1', '2', '3', '10', '12', '20', '21'] ['1', '2', '3', '10', '12', '20', '21']
>>> # bases below 2 and beyond 36 will error >>> # bases below 2 and beyond 36 will error
>>> harshad_numbers_in_base(234, 37) >>> harshad_numbers_in_base(234, 37)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: 'base' must be between 2 and 36 inclusive ValueError: 'base' must be between 2 and 36 inclusive
>>> harshad_numbers_in_base(234, 1) >>> harshad_numbers_in_base(234, 1)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: 'base' must be between 2 and 36 inclusive ValueError: 'base' must be between 2 and 36 inclusive
""" """
if base < 2 or base > 36: if base < 2 or base > 36:
raise ValueError("'base' must be between 2 and 36 inclusive") raise ValueError("'base' must be between 2 and 36 inclusive")
if limit < 0: if limit < 0:
return [] return []
numbers = [ numbers = [
int_to_base(i, base) int_to_base(i, base)
for i in range(1, limit) for i in range(1, limit)
if i % int(sum_of_digits(i, base), base) == 0 if i % int(sum_of_digits(i, base), base) == 0
] ]
return numbers return numbers
def is_harshad_number_in_base(num: int, base: int) -> bool: def is_harshad_number_in_base(num: int, base: int) -> bool:
""" """
Determines whether n in base 'base' is a harshad number. Determines whether n in base 'base' is a harshad number.
Where 'base' ranges from 2 to 36. Where 'base' ranges from 2 to 36.
Examples: Examples:
>>> is_harshad_number_in_base(18, 10) >>> is_harshad_number_in_base(18, 10)
True True
>>> is_harshad_number_in_base(21, 10) >>> is_harshad_number_in_base(21, 10)
True True
>>> is_harshad_number_in_base(-21, 5) >>> is_harshad_number_in_base(-21, 5)
False False
>>> # bases below 2 and beyond 36 will error >>> # bases below 2 and beyond 36 will error
>>> is_harshad_number_in_base(45, 37) >>> is_harshad_number_in_base(45, 37)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: 'base' must be between 2 and 36 inclusive ValueError: 'base' must be between 2 and 36 inclusive
>>> is_harshad_number_in_base(45, 1) >>> is_harshad_number_in_base(45, 1)
Traceback (most recent call last): Traceback (most recent call last):
... ...
ValueError: 'base' must be between 2 and 36 inclusive ValueError: 'base' must be between 2 and 36 inclusive
""" """
if base < 2 or base > 36: if base < 2 or base > 36:
raise ValueError("'base' must be between 2 and 36 inclusive") raise ValueError("'base' must be between 2 and 36 inclusive")
if num < 0: if num < 0:
return False return False
n = int_to_base(num, base) n = int_to_base(num, base)
d = sum_of_digits(num, base) d = sum_of_digits(num, base)
return int(n, base) % int(d, base) == 0 return int(n, base) % int(d, base) == 0
if __name__ == "__main__": if __name__ == "__main__":
import doctest import doctest
doctest.testmod() doctest.testmod()

View File

@ -1,54 +1,54 @@
""" """
Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequence Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequence
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, shows the first 11 ugly numbers. By convention, 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, shows the first 11 ugly numbers. By convention,
1 is included. 1 is included.
Given an integer n, we have to find the nth ugly number. Given an integer n, we have to find the nth ugly number.
For more details, refer this article For more details, refer this article
https://www.geeksforgeeks.org/ugly-numbers/ https://www.geeksforgeeks.org/ugly-numbers/
""" """
def ugly_numbers(n: int) -> int: def ugly_numbers(n: int) -> int:
""" """
Returns the nth ugly number. Returns the nth ugly number.
>>> ugly_numbers(100) >>> ugly_numbers(100)
1536 1536
>>> ugly_numbers(0) >>> ugly_numbers(0)
1 1
>>> ugly_numbers(20) >>> ugly_numbers(20)
36 36
>>> ugly_numbers(-5) >>> ugly_numbers(-5)
1 1
>>> ugly_numbers(-5.5) >>> ugly_numbers(-5.5)
Traceback (most recent call last): Traceback (most recent call last):
... ...
TypeError: 'float' object cannot be interpreted as an integer TypeError: 'float' object cannot be interpreted as an integer
""" """
ugly_nums = [1] ugly_nums = [1]
i2, i3, i5 = 0, 0, 0 i2, i3, i5 = 0, 0, 0
next_2 = ugly_nums[i2] * 2 next_2 = ugly_nums[i2] * 2
next_3 = ugly_nums[i3] * 3 next_3 = ugly_nums[i3] * 3
next_5 = ugly_nums[i5] * 5 next_5 = ugly_nums[i5] * 5
for _ in range(1, n): for _ in range(1, n):
next_num = min(next_2, next_3, next_5) next_num = min(next_2, next_3, next_5)
ugly_nums.append(next_num) ugly_nums.append(next_num)
if next_num == next_2: if next_num == next_2:
i2 += 1 i2 += 1
next_2 = ugly_nums[i2] * 2 next_2 = ugly_nums[i2] * 2
if next_num == next_3: if next_num == next_3:
i3 += 1 i3 += 1
next_3 = ugly_nums[i3] * 3 next_3 = ugly_nums[i3] * 3
if next_num == next_5: if next_num == next_5:
i5 += 1 i5 += 1
next_5 = ugly_nums[i5] * 5 next_5 = ugly_nums[i5] * 5
return ugly_nums[-1] return ugly_nums[-1]
if __name__ == "__main__": if __name__ == "__main__":
from doctest import testmod from doctest import testmod
testmod(verbose=True) testmod(verbose=True)
print(f"{ugly_numbers(200) = }") print(f"{ugly_numbers(200) = }")