mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 00:37:02 +00:00
added ridge regression
This commit is contained in:
commit
6fc134d96c
|
@ -1,6 +1,7 @@
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
class RidgeRegression:
|
class RidgeRegression:
|
||||||
def __init__(self, alpha:float=0.001, regularization_param:float=0.1, num_iterations:int=1000) -> None:
|
def __init__(self, alpha:float=0.001, regularization_param:float=0.1, num_iterations:int=1000) -> None:
|
||||||
self.alpha:float = alpha
|
self.alpha:float = alpha
|
||||||
|
@ -8,8 +9,12 @@ class RidgeRegression:
|
||||||
self.num_iterations:int = num_iterations
|
self.num_iterations:int = num_iterations
|
||||||
self.theta:np.ndarray = None
|
self.theta:np.ndarray = None
|
||||||
|
|
||||||
|
<<<<<<< HEAD
|
||||||
|
|
||||||
def feature_scaling(self, X:np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
def feature_scaling(self, X:np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||||
|
=======
|
||||||
|
def feature_scaling(self, X):
|
||||||
|
>>>>>>> d4fc2bf852ec4a023380f4ef367edefa88fd6881
|
||||||
mean = np.mean(X, axis=0)
|
mean = np.mean(X, axis=0)
|
||||||
std = np.std(X, axis=0)
|
std = np.std(X, axis=0)
|
||||||
|
|
||||||
|
@ -19,7 +24,6 @@ class RidgeRegression:
|
||||||
X_scaled = (X - mean) / std
|
X_scaled = (X - mean) / std
|
||||||
return X_scaled, mean, std
|
return X_scaled, mean, std
|
||||||
|
|
||||||
|
|
||||||
def fit(self, X:np.ndarray, y:np.ndarray) -> None:
|
def fit(self, X:np.ndarray, y:np.ndarray) -> None:
|
||||||
X_scaled, mean, std = self.feature_scaling(X)
|
X_scaled, mean, std = self.feature_scaling(X)
|
||||||
m, n = X_scaled.shape
|
m, n = X_scaled.shape
|
||||||
|
@ -30,24 +34,30 @@ class RidgeRegression:
|
||||||
error = predictions - y
|
error = predictions - y
|
||||||
|
|
||||||
# computing gradient with L2 regularization
|
# computing gradient with L2 regularization
|
||||||
gradient = (X_scaled.T.dot(error) + self.regularization_param * self.theta) / m
|
gradient = (
|
||||||
|
X_scaled.T.dot(error) + self.regularization_param * self.theta
|
||||||
|
) / m
|
||||||
self.theta -= self.alpha * gradient # updating weights
|
self.theta -= self.alpha * gradient # updating weights
|
||||||
|
|
||||||
|
|
||||||
def predict(self, X:np.ndarray) -> np.ndarray:
|
def predict(self, X:np.ndarray) -> np.ndarray:
|
||||||
X_scaled, _, _ = self.feature_scaling(X)
|
X_scaled, _, _ = self.feature_scaling(X)
|
||||||
return X_scaled.dot(self.theta)
|
return X_scaled.dot(self.theta)
|
||||||
|
|
||||||
|
<<<<<<< HEAD
|
||||||
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
|
def compute_cost(self, X:np.ndarray, y:np.ndarray) -> float:
|
||||||
X_scaled, _, _ = self.feature_scaling(X)
|
X_scaled, _, _ = self.feature_scaling(X)
|
||||||
|
=======
|
||||||
|
def compute_cost(self, X, y):
|
||||||
|
X_scaled, _, _ = self.feature_scaling(X)
|
||||||
|
>>>>>>> d4fc2bf852ec4a023380f4ef367edefa88fd6881
|
||||||
m = len(y)
|
m = len(y)
|
||||||
|
|
||||||
predictions = X_scaled.dot(self.theta)
|
predictions = X_scaled.dot(self.theta)
|
||||||
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (self.regularization_param / (2 * m)) * np.sum(self.theta**2)
|
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (
|
||||||
|
self.regularization_param / (2 * m)
|
||||||
|
) * np.sum(self.theta**2)
|
||||||
return cost
|
return cost
|
||||||
|
|
||||||
|
|
||||||
def mean_absolute_error(self, y_true:np.ndarray, y_pred:np.ndarray) -> float:
|
def mean_absolute_error(self, y_true:np.ndarray, y_pred:np.ndarray) -> float:
|
||||||
return np.mean(np.abs(y_true - y_pred))
|
return np.mean(np.abs(y_true - y_pred))
|
||||||
|
|
||||||
|
@ -59,8 +69,13 @@ if __name__ == "__main__":
|
||||||
y = df["ADR"].values
|
y = df["ADR"].values
|
||||||
y = (y - np.mean(y)) / np.std(y)
|
y = (y - np.mean(y)) / np.std(y)
|
||||||
|
|
||||||
|
<<<<<<< HEAD
|
||||||
# added bias term to the feature matrix
|
# added bias term to the feature matrix
|
||||||
X = np.c_[np.ones(X.shape[0]), X]
|
X = np.c_[np.ones(X.shape[0]), X]
|
||||||
|
=======
|
||||||
|
# Add bias term (intercept) to the feature matrix
|
||||||
|
X = np.c_[np.ones(X.shape[0]), X]
|
||||||
|
>>>>>>> d4fc2bf852ec4a023380f4ef367edefa88fd6881
|
||||||
|
|
||||||
# initialize and train the ridge regression model
|
# initialize and train the ridge regression model
|
||||||
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user