mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Fixes LGTM issues (#1745)
* Fixes redefinition of a variable * Fixes implementing __eq__ * Updates docstring
This commit is contained in:
parent
80718bd880
commit
6fdd53c676
|
@ -6,7 +6,7 @@ def max_subarray_sum(nums: list) -> int:
|
|||
if not nums:
|
||||
return 0
|
||||
n = len(nums)
|
||||
s = [0] * n
|
||||
|
||||
res, s, s_pre = nums[0], nums[0], nums[0]
|
||||
for i in range(1, n):
|
||||
s = max(nums[i], s_pre + nums[i])
|
||||
|
|
|
@ -4,13 +4,14 @@ import math
|
|||
|
||||
class SearchProblem:
|
||||
"""
|
||||
A interface to define search problems. The interface will be illustrated using
|
||||
the example of mathematical function.
|
||||
An interface to define search problems.
|
||||
The interface will be illustrated using the example of mathematical function.
|
||||
"""
|
||||
|
||||
def __init__(self, x: int, y: int, step_size: int, function_to_optimize):
|
||||
"""
|
||||
The constructor of the search problem.
|
||||
|
||||
x: the x coordinate of the current search state.
|
||||
y: the y coordinate of the current search state.
|
||||
step_size: size of the step to take when looking for neighbors.
|
||||
|
@ -63,6 +64,14 @@ class SearchProblem:
|
|||
"""
|
||||
return hash(str(self))
|
||||
|
||||
def __eq__(self, obj):
|
||||
"""
|
||||
Check if the 2 objects are equal.
|
||||
"""
|
||||
if isinstance(obj, SearchProblem):
|
||||
return hash(str(self)) == hash(str(obj))
|
||||
return False
|
||||
|
||||
def __str__(self):
|
||||
"""
|
||||
string representation of the current search state.
|
||||
|
@ -85,10 +94,11 @@ def hill_climbing(
|
|||
max_iter: int = 10000,
|
||||
) -> SearchProblem:
|
||||
"""
|
||||
implementation of the hill climbling algorithm. We start with a given state, find
|
||||
all its neighbors, move towards the neighbor which provides the maximum (or
|
||||
minimum) change. We keep doing this until we are at a state where we do not
|
||||
have any neighbors which can improve the solution.
|
||||
Implementation of the hill climbling algorithm.
|
||||
We start with a given state, find all its neighbors,
|
||||
move towards the neighbor which provides the maximum (or minimum) change.
|
||||
We keep doing this until we are at a state where we do not have any
|
||||
neighbors which can improve the solution.
|
||||
Args:
|
||||
search_prob: The search state at the start.
|
||||
find_max: If True, the algorithm should find the maximum else the minimum.
|
||||
|
|
Loading…
Reference in New Issue
Block a user