Created Union-Find algorithm

This commit is contained in:
Gilberto Alexandre dos Santos 2017-10-23 22:36:38 -03:00
parent 8e6db7a69f
commit 7180f08204
3 changed files with 164 additions and 0 deletions

View File

View File

@ -0,0 +1,77 @@
from union_find import UnionFind
import unittest
class TestUnionFind(unittest.TestCase):
def test_init_with_valid_size(self):
uf = UnionFind(5)
self.assertEqual(uf.size, 5)
def test_init_with_invalid_size(self):
with self.assertRaises(ValueError):
uf = UnionFind(0)
with self.assertRaises(ValueError):
uf = UnionFind(-5)
def test_union_with_valid_values(self):
uf = UnionFind(10)
for i in range(11):
for j in range(11):
uf.union(i, j)
def test_union_with_invalid_values(self):
uf = UnionFind(10)
with self.assertRaises(ValueError):
uf.union(-1, 1)
with self.assertRaises(ValueError):
uf.union(11, 1)
def test_same_set_with_valid_values(self):
uf = UnionFind(10)
for i in range(11):
for j in range(11):
if i == j:
self.assertTrue(uf.same_set(i, j))
else:
self.assertFalse(uf.same_set(i, j))
uf.union(1, 2)
self.assertTrue(uf.same_set(1, 2))
uf.union(3, 4)
self.assertTrue(uf.same_set(3, 4))
self.assertFalse(uf.same_set(1, 3))
self.assertFalse(uf.same_set(1, 4))
self.assertFalse(uf.same_set(2, 3))
self.assertFalse(uf.same_set(2, 4))
uf.union(1, 3)
self.assertTrue(uf.same_set(1, 3))
self.assertTrue(uf.same_set(1, 4))
self.assertTrue(uf.same_set(2, 3))
self.assertTrue(uf.same_set(2, 4))
uf.union(4, 10)
self.assertTrue(uf.same_set(1, 10))
self.assertTrue(uf.same_set(2, 10))
self.assertTrue(uf.same_set(3, 10))
self.assertTrue(uf.same_set(4, 10))
def test_same_set_with_invalid_values(self):
uf = UnionFind(10)
with self.assertRaises(ValueError):
uf.same_set(-1, 1)
with self.assertRaises(ValueError):
uf.same_set(11, 0)
if __name__ == '__main__':
unittest.main()

View File

@ -0,0 +1,87 @@
class UnionFind():
"""
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
The union-find is a disjoint-set data structure
You can merge two sets and tell if one set belongs to
another one.
It's used on the Kruskal Algorithm
(https://en.wikipedia.org/wiki/Kruskal%27s_algorithm)
The elements are in range [0, size]
"""
def __init__(self, size):
if size <= 0:
raise ValueError("size should be greater than 0")
self.size = size
# The below plus 1 is because we are using elements
# in range [0, size]. It makes more sense.
# Every set begins with only itself
self.root = [i for i in range(size+1)]
# This is used for heuristic union by rank
self.weight = [0 for i in range(size+1)]
def union(self, u, v):
"""
Union of the sets u and v.
Complexity: log(n).
Amortized complexity: < 5 (it's very fast).
"""
self._validate_element_range(u, "u")
self._validate_element_range(v, "v")
if u == v:
return
# Using union by rank will guarantee the
# log(n) complexity
rootu = self._root(u)
rootv = self._root(v)
weight_u = self.weight[rootu]
weight_v = self.weight[rootv]
if weight_u >= weight_v:
self.root[rootv] = rootu
if weight_u == weight_v:
self.weight[rootu] += 1
else:
self.root[rootu] = rootv
def same_set(self, u, v):
"""
Return true if the elements u and v belongs to
the same set
"""
self._validate_element_range(u, "u")
self._validate_element_range(v, "v")
return self._root(u) == self._root(v)
def _root(self, u):
"""
Get the element set root.
This uses the heuristic path compression
See wikipedia article for more details.
"""
if u != self.root[u]:
self.root[u] = self._root(self.root[u])
return self.root[u]
def _validate_element_range(self, u, element_name):
"""
Raises ValueError if element is not in range
"""
if u < 0 or u > self.size:
msg = ("element {0} with value {1} "
"should be in range [0~{2}]")\
.format(element_name, u, self.size)
raise ValueError(msg)