Add default args and type hints for problem 7 (#2973)

- Add default argument values
- Add type hints
- Change one letter variable names to a more descriptive one
- Add doctest for `solution()`
This commit is contained in:
Dhruv 2020-10-08 11:27:47 +05:30 committed by GitHub
parent 6541236fdf
commit 719c5562d9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 49 additions and 32 deletions

View File

@ -1,4 +1,6 @@
"""
Problem 7: https://projecteuler.net/problem=7
By listing the first six prime numbers:
2, 3, 5, 7, 11, and 13
@ -8,20 +10,21 @@ We can see that the 6th prime is 13. What is the Nth prime number?
from math import sqrt
def is_prime(n):
if n == 2:
def is_prime(num: int) -> bool:
"""Determines whether the given number is prime or not"""
if num == 2:
return True
elif n % 2 == 0:
elif num % 2 == 0:
return False
else:
sq = int(sqrt(n)) + 1
sq = int(sqrt(num)) + 1
for i in range(3, sq, 2):
if n % i == 0:
if num % i == 0:
return False
return True
def solution(n):
def solution(nth: int = 10001) -> int:
"""Returns the n-th prime number.
>>> solution(6)
@ -36,18 +39,20 @@ def solution(n):
229
>>> solution(100)
541
>>> solution()
104743
"""
i = 0
j = 1
while i != n and j < 3:
j += 1
if is_prime(j):
i += 1
while i != n:
j += 2
if is_prime(j):
i += 1
return j
count = 0
number = 1
while count != nth and number < 3:
number += 1
if is_prime(number):
count += 1
while count != nth:
number += 2
if is_prime(number):
count += 1
return number
if __name__ == "__main__":

View File

@ -1,4 +1,6 @@
"""
Problem 7: https://projecteuler.net/problem=7
By listing the first six prime numbers:
2, 3, 5, 7, 11, and 13
@ -7,14 +9,15 @@ We can see that the 6th prime is 13. What is the Nth prime number?
"""
def isprime(number):
def isprime(number: int) -> bool:
"""Determines whether the given number is prime or not"""
for i in range(2, int(number ** 0.5) + 1):
if number % i == 0:
return False
return True
def solution(n):
def solution(nth: int = 10001) -> int:
"""Returns the n-th prime number.
>>> solution(6)
@ -29,34 +32,38 @@ def solution(n):
229
>>> solution(100)
541
>>> solution()
104743
>>> solution(3.4)
5
>>> solution(0)
Traceback (most recent call last):
...
ValueError: Parameter n must be greater or equal to one.
ValueError: Parameter nth must be greater or equal to one.
>>> solution(-17)
Traceback (most recent call last):
...
ValueError: Parameter n must be greater or equal to one.
ValueError: Parameter nth must be greater or equal to one.
>>> solution([])
Traceback (most recent call last):
...
TypeError: Parameter n must be int or passive of cast to int.
TypeError: Parameter nth must be int or passive of cast to int.
>>> solution("asd")
Traceback (most recent call last):
...
TypeError: Parameter n must be int or passive of cast to int.
TypeError: Parameter nth must be int or passive of cast to int.
"""
try:
n = int(n)
nth = int(nth)
except (TypeError, ValueError):
raise TypeError("Parameter n must be int or passive of cast to int.")
if n <= 0:
raise ValueError("Parameter n must be greater or equal to one.")
raise TypeError(
"Parameter nth must be int or passive of cast to int."
) from None
if nth <= 0:
raise ValueError("Parameter nth must be greater or equal to one.")
primes = []
num = 2
while len(primes) < n:
while len(primes) < nth:
if isprime(num):
primes.append(num)
num += 1

View File

@ -1,4 +1,6 @@
"""
Project 7: https://projecteuler.net/problem=7
By listing the first six prime numbers:
2, 3, 5, 7, 11, and 13
@ -9,7 +11,8 @@ import itertools
import math
def primeCheck(number):
def prime_check(number: int) -> bool:
"""Determines whether a given number is prime or not"""
if number % 2 == 0 and number > 2:
return False
return all(number % i for i in range(3, int(math.sqrt(number)) + 1, 2))
@ -18,12 +21,12 @@ def primeCheck(number):
def prime_generator():
num = 2
while True:
if primeCheck(num):
if prime_check(num):
yield num
num += 1
def solution(n):
def solution(nth: int = 10001) -> int:
"""Returns the n-th prime number.
>>> solution(6)
@ -38,8 +41,10 @@ def solution(n):
229
>>> solution(100)
541
>>> solution()
104743
"""
return next(itertools.islice(prime_generator(), n - 1, n))
return next(itertools.islice(prime_generator(), nth - 1, nth))
if __name__ == "__main__":