Refactor local_weighted_learning.py to use np.array (#8069)

* updating DIRECTORY.md

* Format local_weighted_learning.py doctests for clarity

* Refactor local_weighted_learning.py to use np.array instead of np.mat

The np.matrix class is planned to be eventually depreciated in favor of
np.array, and current use of the class raises warnings in pytest

* Update local_weighted_learning.py documentation

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Tianyi Zheng 2023-01-02 05:07:39 -08:00 committed by GitHub
parent 7c1d23d448
commit 725731c8d2
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 68 additions and 51 deletions

View File

@ -123,6 +123,7 @@
* [Huffman](compression/huffman.py)
* [Lempel Ziv](compression/lempel_ziv.py)
* [Lempel Ziv Decompress](compression/lempel_ziv_decompress.py)
* [Lz77](compression/lz77.py)
* [Peak Signal To Noise Ratio](compression/peak_signal_to_noise_ratio.py)
* [Run Length Encoding](compression/run_length_encoding.py)
@ -1162,7 +1163,7 @@
* [Get Amazon Product Data](web_programming/get_amazon_product_data.py)
* [Get Imdb Top 250 Movies Csv](web_programming/get_imdb_top_250_movies_csv.py)
* [Get Imdbtop](web_programming/get_imdbtop.py)
* [Get Top Billioners](web_programming/get_top_billioners.py)
* [Get Top Billionaires](web_programming/get_top_billionaires.py)
* [Get Top Hn Posts](web_programming/get_top_hn_posts.py)
* [Get User Tweets](web_programming/get_user_tweets.py)
* [Giphy](web_programming/giphy.py)

View File

@ -1,76 +1,86 @@
# Required imports to run this file
import matplotlib.pyplot as plt
import numpy as np
# weighted matrix
def weighted_matrix(point: np.mat, training_data_x: np.mat, bandwidth: float) -> np.mat:
def weighted_matrix(
point: np.array, training_data_x: np.array, bandwidth: float
) -> np.array:
"""
Calculate the weight for every point in the
data set. It takes training_point , query_point, and tau
Here Tau is not a fixed value it can be varied depends on output.
tau --> bandwidth
xmat -->Training data
point --> the x where we want to make predictions
>>> weighted_matrix(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
... [24.59,25.69]]), 0.6)
matrix([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
Calculate the weight for every point in the data set.
point --> the x value at which we want to make predictions
>>> weighted_matrix(
... np.array([1., 1.]),
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
... 0.6
... )
array([[1.43807972e-207, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
"""
# m is the number of training samples
m, n = np.shape(training_data_x)
# Initializing weights as identity matrix
weights = np.mat(np.eye(m))
m, _ = np.shape(training_data_x) # m is the number of training samples
weights = np.eye(m) # Initializing weights as identity matrix
# calculating weights for all training examples [x(i)'s]
for j in range(m):
diff = point - training_data_x[j]
weights[j, j] = np.exp(diff * diff.T / (-2.0 * bandwidth**2))
weights[j, j] = np.exp(diff @ diff.T / (-2.0 * bandwidth**2))
return weights
def local_weight(
point: np.mat, training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
) -> np.mat:
point: np.array,
training_data_x: np.array,
training_data_y: np.array,
bandwidth: float,
) -> np.array:
"""
Calculate the local weights using the weight_matrix function on training data.
Return the weighted matrix.
>>> local_weight(np.array([1., 1.]),np.mat([[16.99, 10.34], [21.01,23.68],
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
matrix([[0.00873174],
[0.08272556]])
>>> local_weight(
... np.array([1., 1.]),
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
... np.array([[1.01, 1.66, 3.5]]),
... 0.6
... )
array([[0.00873174],
[0.08272556]])
"""
weight = weighted_matrix(point, training_data_x, bandwidth)
w = (training_data_x.T * (weight * training_data_x)).I * (
training_data_x.T * weight * training_data_y.T
w = np.linalg.inv(training_data_x.T @ (weight @ training_data_x)) @ (
training_data_x.T @ weight @ training_data_y.T
)
return w
def local_weight_regression(
training_data_x: np.mat, training_data_y: np.mat, bandwidth: float
) -> np.mat:
training_data_x: np.array, training_data_y: np.array, bandwidth: float
) -> np.array:
"""
Calculate predictions for each data point on axis.
>>> local_weight_regression(np.mat([[16.99, 10.34], [21.01,23.68],
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
Calculate predictions for each data point on axis
>>> local_weight_regression(
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
... np.array([[1.01, 1.66, 3.5]]),
... 0.6
... )
array([1.07173261, 1.65970737, 3.50160179])
"""
m, n = np.shape(training_data_x)
m, _ = np.shape(training_data_x)
ypred = np.zeros(m)
for i, item in enumerate(training_data_x):
ypred[i] = item * local_weight(
ypred[i] = item @ local_weight(
item, training_data_x, training_data_y, bandwidth
)
return ypred
def load_data(dataset_name: str, cola_name: str, colb_name: str) -> np.mat:
def load_data(
dataset_name: str, cola_name: str, colb_name: str
) -> tuple[np.array, np.array, np.array, np.array]:
"""
Function used for loading data from the seaborn splitting into x and y points
Load data from seaborn and split it into x and y points
"""
import seaborn as sns
@ -78,23 +88,25 @@ def load_data(dataset_name: str, cola_name: str, colb_name: str) -> np.mat:
col_a = np.array(data[cola_name]) # total_bill
col_b = np.array(data[colb_name]) # tip
mcol_a = np.mat(col_a)
mcol_b = np.mat(col_b)
mcol_a = col_a.copy()
mcol_b = col_b.copy()
m = np.shape(mcol_b)[1]
one = np.ones((1, m), dtype=int)
one = np.ones(np.shape(mcol_b)[0], dtype=int)
# horizontal stacking
training_data_x = np.hstack((one.T, mcol_a.T))
# pairing elements of one and mcol_a
training_data_x = np.column_stack((one, mcol_a))
return training_data_x, mcol_b, col_a, col_b
def get_preds(training_data_x: np.mat, mcol_b: np.mat, tau: float) -> np.ndarray:
def get_preds(training_data_x: np.array, mcol_b: np.array, tau: float) -> np.array:
"""
Get predictions with minimum error for each training data
>>> get_preds(np.mat([[16.99, 10.34], [21.01,23.68],
... [24.59,25.69]]),np.mat([[1.01, 1.66, 3.5]]), 0.6)
>>> get_preds(
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
... np.array([[1.01, 1.66, 3.5]]),
... 0.6
... )
array([1.07173261, 1.65970737, 3.50160179])
"""
ypred = local_weight_regression(training_data_x, mcol_b, tau)
@ -102,15 +114,15 @@ def get_preds(training_data_x: np.mat, mcol_b: np.mat, tau: float) -> np.ndarray
def plot_preds(
training_data_x: np.mat,
predictions: np.ndarray,
col_x: np.ndarray,
col_y: np.ndarray,
training_data_x: np.array,
predictions: np.array,
col_x: np.array,
col_y: np.array,
cola_name: str,
colb_name: str,
) -> plt.plot:
"""
This function used to plot predictions and display the graph
Plot predictions and display the graph
"""
xsort = training_data_x.copy()
xsort.sort(axis=0)
@ -128,6 +140,10 @@ def plot_preds(
if __name__ == "__main__":
import doctest
doctest.testmod()
training_data_x, mcol_b, col_a, col_b = load_data("tips", "total_bill", "tip")
predictions = get_preds(training_data_x, mcol_b, 0.5)
plot_preds(training_data_x, predictions, col_a, col_b, "total_bill", "tip")