diff --git a/maths/binary_exp_mod.py b/maths/binary_exp_mod.py new file mode 100644 index 000000000..67dd1e728 --- /dev/null +++ b/maths/binary_exp_mod.py @@ -0,0 +1,28 @@ +def bin_exp_mod(a, n, b): + """ + >>> bin_exp_mod(3, 4, 5) + 1 + >>> bin_exp_mod(7, 13, 10) + 7 + """ + # mod b + assert not (b == 0), "This cannot accept modulo that is == 0" + if n == 0: + return 1 + + if n % 2 == 1: + return (bin_exp_mod(a, n - 1, b) * a) % b + + r = bin_exp_mod(a, n / 2, b) + return (r * r) % b + + +if __name__ == "__main__": + try: + BASE = int(input("Enter Base : ").strip()) + POWER = int(input("Enter Power : ").strip()) + MODULO = int(input("Enter Modulo : ").strip()) + except ValueError: + print("Invalid literal for integer") + + print(bin_exp_mod(BASE, POWER, MODULO)) diff --git a/maths/miller_rabin.py b/maths/miller_rabin.py new file mode 100644 index 000000000..fe9920271 --- /dev/null +++ b/maths/miller_rabin.py @@ -0,0 +1,50 @@ +import random + +from .binary_exp_mod import bin_exp_mod + + +# This is a probabilistic check to test primality, useful for big numbers! +# if it's a prime, it will return true +# if it's not a prime, the chance of it returning true is at most 1/4**prec +def is_prime(n, prec=1000): + """ + >>> from .prime_check import prime_check + >>> all(is_prime(i) == prime_check(i) for i in range(1000)) + True + """ + if n < 2: + return False + + if n % 2 == 0: + return n == 2 + + # this means n is odd + d = n - 1 + exp = 0 + while d % 2 == 0: + d /= 2 + exp += 1 + + # n - 1=d*(2**exp) + count = 0 + while count < prec: + a = random.randint(2, n - 1) + b = bin_exp_mod(a, d, n) + if b != 1: + flag = True + for i in range(exp): + if b == n - 1: + flag = False + break + b = b * b + b %= n + if flag: + return False + count += 1 + return True + + +if __name__ == "__main__": + n = abs(int(input("Enter bound : ").strip())) + print("Here's the list of primes:") + print(", ".join(str(i) for i in range(n + 1) if is_prime(i)))